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ABSTRACT

In Proofs that Really Count, Benjamin and Quinn wrote that there were no known bijective
proofs for certain identities that give instances of Zeckendorf’s Theorem, for example, 5fn =
fn+3 + fn−1 + fn−4, where n ≥ 4 and where fk is the k-th Fibonacci number (there are
analogous identities for `fn for every positive integer `). In this paper, we provide bijective
proofs for 5fn = fn+3 + fn−1 + fn−4 and the seven other examples of such identities listed
in Proofs that Really Count. We interpret fk as the cardinality of the set Fk consisting of all
ordered lists of 1’s and 2’s whose sum is k. We then demonstrate bijections that prove the eight
identities listed in Proofs that Really Count; for example, to prove 5fn = fn+3+fn−1+fn−4, we
give a bijection between {1, 2, 3, 4, 5}×Fn and Fn+3 ∪Fn−1 ∪Fn−4. A few possible directions
for future research are also given.

1. INTRODUCTION

We will interpret the n-th Fibonacci number fn as the cardinality of the set Fn of all or-
dered lists of 1’s and 2’s that have sum n. Thus, (f0, f1, f2, f3, f4, f5, . . . ) = (1, 1, 2, 3, 5, 8, . . . ).
For an integer `, the number `fn will be interpreted as the cardinality of the Cartesian product
[`] × Fn, where [`] := {1, 2, 3, . . . , `}. We will use the notation [[a1, a2, . . . , ak]] to denote an
element of Fn.

On page 15 of Proofs that Really Count [1], the following eight identities are given under
the heading of identities in need of combinatorial proofs:

5fn = fn+3 + fn−1 + fn−4 for n ≥ 4 (5)
6fn = fn+3 + fn+1 + fn−4 for n ≥ 4 (6)
7fn = fn+4 + fn−4 for n ≥ 4 (7)
8fn = fn+4 + fn + fn−4 for n ≥ 4 (8)
9fn = fn+4 + fn+1 + fn−2 + fn−4 for n ≥ 4 (9)

10fn = fn+4 + fn+2 + fn−2 + fn−4 for n ≥ 4 (10)
11fn = fn+4 + fn+2 + fn + fn−2 + fn−4 for n ≥ 4 (11)
12fn = fn+5 + fn−1 + fn−3 + fn−6 for n ≥ 6 (12)

(Note that each of the above identities is easily seen to be true by induction; and also each
identity is true for all integers n by extending the definition of Fibonacci numbers recursively
to negative indices.)

In Section 2.1, we construct a map

φ5 : [5]×Fn −→ Fn+3 ∪ Fn−1 ∪ Fn−4,
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and we explain why φ5 is bijective, thus providing a bijective proof of Equation (5). In
Appendix A, we define bijections φ` for ` = 6, 7, 8, 9, 10, 11, 12 which are similar to φ5 and
which provide bijective proofs of the identities given in, respectively, Equations (6), (7), (8),
(9), (10), (11), and (12) above. For (i,X) ∈ [`]× Fn, the general approach for each bijection
(including φ5) is to prepend a short list of 1’s and 2’s to X depending on i, and in a few more
complicated cases the short list being prepended to X also depends on the initial elements in
X (which are deleted before prepending). A Maple implementation [5] of all the bijections in
this paper along with programs to check bijectivity may be found online at:

\http://www.math.rutgers.edu/∼matchett/Publications/FibBijections
In Section 3 we discuss how the identities relate to Zeckendorf’s Theorem and give some

possible directions for further research.

2. A BIJECTION FOR 5fn = fn+3 + fn−1 + fn−4

The bijection φ5:
For n ≥ 4, we define the bijection φ5 : [5] × Fn −→ Fn+3 ∪ Fn−1 ∪ Fn−4 below. For

(i,X) ∈ [5] × Fn, we define φ5 by cases depending on the value of i. For each case, the
output is X with whatever action is described, for example “prepend [[1, 1, 1]]” means that
φ5(i, X) = Y , where Y is the list starting with three 1’s followed by elements of X (see below
for examples). Similarly, saying “change the [[1]] to [[2, 2]]” means that φ(i, X) = Y where Y
consists of two 2’s followed all the elements in X except the first element (which must have
been 1).
If i = 1, then prepend [[1, 1, 1]] (↪→ Fn+3)
If i = 2, then prepend [[1, 2]] (↪→ Fn+3)
If i = 3, then prepend [[2, 1]] (↪→ Fn+3)
If i = 4, then
• if X starts with [[1]], then change the [[1]] to [[2, 2]]. (↪→ Fn+3)
• if X starts with [[2, 1]], then change the [[2, 1]] to [[1, 1, 2, 2]]. (↪→ Fn+3)
• if X starts with [[2, 2]], then change the [[2, 2]] to [[ ]] (↪→ Fn−4)

If i = 5, then
• if X starts with [[1]], then change the [[1]] to [[ ]]. (↪→ Fn−1)
• if X starts with [[2]], then change the [[2]] to [[1, 1, 2, 1]]. (↪→ Fn+3)

We defer the description of the bijections φ` for ` = 6, 7, 8, 9, 10, 11, 12 to Section A, since
they are very similar to the bijection φ5 described above.
Examples for n = 4:

φ5 : (1, [[1,2,1]]) 7→ [[1,1,1,1,2,1]] ∈ F7

φ5 : (2, [[1,2,1]]) 7→ [[1,2,1,2,1]] ∈ F7

φ5 : (3, [[1,2,1]]) 7→ [[2,1,1,2,1]] ∈ F7

φ5 : (4, [[1,2,1]]) 7→ [[2,2,2,1]] ∈ F7

φ5 : (4, [[2,1,1]]) 7→ [[1,1,2,2,1]] ∈ F7

φ5 : (4, [[2,2]]) 7→ [[]] ∈ F0

φ5 : (5, [[1,2,1]]) 7→ [[2,1]] ∈ F3

φ5 : (5, [[2,1,1]]) 7→ [[1,1,2,1,1,1]] ∈ F7
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Note that for n = 4, the domain for φ5 is {1, 2, 3, 4, 5} × F4 and the range is F7 ∪ F3 ∪ F0.
2.1.1 Showing φ5 is bijective

Each of the eight cases for φ5 is injective. Thus, it is sufficient to check that none of the
eight images overlap and that together they are surjective, which we now do.

There is exactly one case mapping to Fn−4 (namely, when i = 4 and X starts with
[[2,2]]), and it is clearly surjective. Also, there is exactly one case mapping to Fn−1 (namely,
when i = 5 and X starts with [[1]]), and it is also clearly surjective. There are six cases
mapping to Fn+3, and one can compare the prefixes attached in each case to see that the six
images are disjoint and together comprise all of Fn+3 (see Figure 1).

Fn+3

Figure 1: All of the elements of Fn+3 fit into the tree above. To find the placement of a
particular ordered list X ∈ Fn+3, move down the tree from the root, ◦, at the top, moving left
in the k-th level if the k-th entry in X is 1 and moving right if the k-th entry is 2.

Thus, φ5 is a bijection that provides a combinatorial proof of Equation (5). It is clear
that a combinatorial inverse for φ5 may be constructed using the tree in Figure 1.

3. FURTHER DIRECTIONS

As mentioned in [1], the identities in Equations (5), (6), . . . , (12), give instances of
Zeckendorf’s Theorem that every positive integer can be uniquely represented as a sum of
non-consecutive Fibonacci numbers (for more on Zeckendorf’s Theorem, see [2]; a clever com-
binatorial proof has also been given by Gessel [3]).

We may define the `-th Zeckendorf family identity to be an equation with the form
`fn =

∑
t∈S`

fn+t (13)

that holds for all integers n, where S` is a finite subset of integers that depends only on ` and
contains no two adjacent integers. Plugging in values for ` and n in the `-th Zeckendorf family
identity gives a formula that is an instance of Zeckendorf’s Theorem (so long as n is sufficiently
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large—Zeckendorf’s Theorem only applies to Fibonacci numbers with positive indices, so we
need n + t > 0 for all t ∈ S`). However, that fact that Zeckendorf family identities exist for
all ` is not simply a consequence of Zeckendorf’s Theorem, since the `-th Zeckendorf family
identity holds for all sufficiently large n while the set S` is fixed. Also, note that the set S` is
unique (by Zeckendorf’s Theorem).

The bijections described in this paper may appear to involve some arbitrary choices, and
indeed they do. For the bijection φ` with domain [`]×Fn, the elements in [`] can be regarded as
formal symbols; and thus there are `! bijections possible by renaming the symbols in [`], which
simply permutes the main cases of the bijection φ`. Also, by reversing all lists in the range or
domain or both it is trivially possible to construct new bijections; however, these new bijection
do not contribute to understanding the structure of the Zeckendorf family identities. Thus,
we will define two bijections for the `-th Zeckendorf family identity to be formally equivalent
if one may be derived from the other by permuting the symbols in [`] and possibly reversing
lists in the range or domain.

Interestingly, the methods used to construct the bijections in this paper can be used to
construct numerous bijections that are not formally equivalent. For example, it is possible to
construct (at least) 3! = 6 bijections for Equation (5) that are distinct with respect to formal
equivalence (one of which is φ5). These bijections provide similar, but distinct, bijective proofs
of Equation (5). Analogously, counting only bijections that are not formally equivalent, there
are (at least) 6 possible bijections for each of Equations (6), (7), and (8); (at least) 4! = 24
possible bijections for each of Equations (9), (10), and (11); and (at least) 8! = 40320 possible
bijections for Equation (12).

Paul Raff [4] proposed an alternative approach that can be used to construct a bijection
for Equation (5), and it turns out that the resulting bijection is formally equivalent to one of
the 6 bijections constructible by the methods in the current paper.

The following questions are of interest for further work.
1. Is there another approach for constructing bijections for Equations (5), (6), . . . , and (12),

or other Zeckendorf family identities that explicitly uses Zeckendorf’s condition that the
Fibonacci numbers not be adjacent?
Note that the bijection φ5 (see Section 2.1) does not make explicit use of the fact that the
sets Fn+3, Fn−1, and Fn−4 have indices that differ by at least 2.

2. Is there another approach for constructing bijections for Equations (5), (6), . . . , and (12),
or other Zeckendorf family identities where [`] is interpreted combinatorially, instead of
as just a collection of formal symbols?

3. Is there a systematic way to construct a (not necessarily unique) bijection for the `-th
Zeckendorf family identity (see Equation (13))?

4. Is there a unique or canonical bijection for the `-th Zeckendorf family identity?
5. Is there a simple combinatorial proof of the existence and uniqueness of the `-th Zeckendorf

family identity?
A possible starting point might be Gessel’s elegant combinatorial proof for Zeckendorf’s
Theorem and a few of its generalizations ([3]). The basic idea of Gessel’s proof is to form
two simple bijections—one from Zeckendorf representations to the ordered list L of positive
binary numbers with no adjacent 1’s, and another from L to the positive integers—and
then to prove that the composition of the two bijections is the canonical map taking a
Zeckendorf representation to the integer it represents.
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APPENDIX

Bijections for Equations (6), (7), (8), (9), (10), (11), and (12):
In this appendix we describe bijections φ` for ` = 6, 7, 8, 9, 10, 11, 12, which provide bijec-

tive proofs of, respectively, Equations (6), (7), (8), (9), (10), (11), and (12). It is clear that
the φ` defined below are bijections by drawing trees analogous to the one in Figure 1.
A.1 A bijection for 6fn = fn+3 + fn+1 + fn−4:

We define the bijection φ6 : [6] × Fn −→ Fn+3 ∪ Fn+1 ∪ Fn−4 below. This bijection is
a combinatorial interpretation of Equation (6). For (i,X) ∈ [6] × Fn, we define φ6 by cases
depending on the value of i.

If i = 1, then prepend [[1]] (↪→ Fn+1)
If i = 2, then prepend [[1,1,1]] (↪→ Fn+3)
If i = 3, then prepend [[1,2]] (↪→ Fn+3)
If i = 4, then prepend [[2,1]] (↪→ Fn+3)
If i = 5, then
• if X starts with [[1]], then change the [[1]]to [[2,2]] (↪→ Fn+3)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,1,2,2]]. (↪→ Fn+3)
• if X starts with [[2,2]], then change the [[2,2]]to [[]]. (↪→ Fn−4)

If i = 6, then
• if X starts with [[1]], then change the [[1]]to [[2]]. (↪→ Fn+1)
• if X starts with [[2]], then change the [[2]]to [[1,1,2,1]]. (↪→ Fn+3)

A.2 A bijection for 7fn = fn+4 + fn−4 :
We define the bijection φ7 : [7] × Fn −→ Fn+4 ∪ Fn−4 below. This bijection is a combi-

natorial interpretation of Equation (7). For (i, X) ∈ [7]×Fn, we define φ7 by cases depending
on the value of i.

If i = 1, then prepend [[1,1,1,1]] (↪→ Fn+4)
If i = 2, then prepend [[1,1,2]] (↪→ Fn+4)
If i = 3, then prepend [[1,2,1]] (↪→ Fn+4)
If i = 4, then prepend [[2,1,1]] (↪→ Fn+4)
If i = 5, then prepend [[2,2]] (↪→ Fn+4)
If i = 6, then
• if X starts with [[1 ]], then change the [[1]]to [[1,2,2]] (↪→ Fn+4)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,1,1,2,2]]. (↪→ Fn+4)
• if X starts with [[2,2]], then change the [[2,2]]to [[ ]]. (↪→ Fn−4)

If i = 7, then
• if X starts with [[1]], then change the [[1]]to [[2,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[1,1,1,2,1]]. (↪→ Fn+4)
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A.3 A bijection for 8fn = fn+4 + fn + fn−4 :
We define the bijection φ8 : [8] × Fn −→ Fn+4 ∪ Fn ∪ Fn−4 below. This bijection is a

combinatorial interpretation of Equation (8). For (i,X) ∈ [8] × Fn, we define φ8 by cases
depending on the value of i.

If i = 1, then prepend [[1,1,1,1]] (↪→ Fn+4)
If i = 2, then prepend [[1,1,2]] (↪→ Fn+4)
If i = 3, then prepend [[1,2,1]] (↪→ Fn+4)
If i = 4, then prepend [[2,1,1]] (↪→ Fn+4)
If i = 5, then prepend [[2,2]] (↪→ Fn+4)
If i = 6, then do nothing (↪→ Fn)
If i = 7, then
• if X starts with [[1]], then change the [[1]]to [[1,2,2]] (↪→ Fn+4)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,1,1,2,2]]. (↪→ Fn+4)
• if X starts with [[2,2]], then change the [[2,2]]to [[ ]]. (↪→ Fn−4)

If i = 8, then
• if X starts with [[1]], then change the [[1]]to [[2,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[1,1,1,2,1]]. (↪→ Fn+4)

A.4 A bijection for 9fn = fn+4 + fn+1 + fn−2 + fn−4:
We define the bijection φ9 : [9]×Fn −→ Fn+4∪Fn+1∪Fn−2∪Fn−4 below. This bijection

is a combinatorial interpretation of Equation (9). For (i,X) ∈ [9]×Fn, we define φ9 by cases
depending on the value of i.

If i = 1, then prepend [[1,1,1,1]] (↪→ Fn+4)
If i = 2, then prepend [[1,1,2]] (↪→ Fn+4)
If i = 3, then prepend [[1,2,1]] (↪→ Fn+4)
If i = 4, then prepend [[2,1,1]] (↪→ Fn+4)
If i = 5, then prepend [[2,2]] (↪→ Fn+4)
If i = 6, then prepend [[1]] (↪→ Fn+1)
If i = 7, then
• if X starts with [[1]], then change the [[1]]to [[1,1,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[ ]]. (↪→ Fn−2)

If i = 8, then
• if X starts with [[1]], then change the [[1]]to [[1,2,2]] (↪→ Fn+4)
• if X starts with [[2,1 ]], then change the [[2,1 ]]to [[2,2 ]]. (↪→ Fn+1)
• if X starts with [[2,2 ]], then change the [[2,2 ]]to [[ ]]. (↪→ Fn−4)

If i = 9, then
• if X starts with [[1]], then change the [[1]]to [[2,1,2]]. (↪→ Fn+4)
• if X starts with [[2,1]], then change the [[2,1]]to [[2,1,1]]. (↪→ Fn+1)
• if X starts with [[2,2]], then change the [[2,2]]to [[2,1,2]]. (↪→ Fn+1)

A.5 A bijection for 10fn = fn+4 + fn+2 + fn−2 + fn−4:
We define the bijection φ10 : [10] × Fn −→ Fn+4 ∪ Fn+2 ∪ Fn−2 ∪ Fn−4 below. This

bijection is a combinatorial interpretation of Equation (10). For (i, X) ∈ [10]× Fn, we define
φ10 by cases depending on the value of i.

If i = 1, then prepend [[1,1,1,1]] (↪→ Fn+4)
If i = 2, then prepend [[1,1,2]] (↪→ Fn+4)
If i = 3, then prepend [[1,2,1]] (↪→ Fn+4)
If i = 4, then prepend [[2,1,1]] (↪→ Fn+4)
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If i = 5, then prepend [[2,2]] (↪→ Fn+4)
If i = 6, then prepend [[1,1]] (↪→ Fn+2)
If i = 7, then prepend [[2]] (↪→ Fn+2)
If i = 8, then
• if X starts with [[1]], then change the [[1]]to [[1,1,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[ ]]. (↪→ Fn−2)

If i = 9, then
• if X starts with [[1]], then change the [[1]]to [[1,2,2]] (↪→ Fn+4)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,2,2]]. (↪→ Fn+2)
• if X starts with [[2,2]], then change the [[2,2]]to [[ ]]. (↪→ Fn−4)

If i = 10, then
• if X starts with [[1]], then change the [[1]]to [[2,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[1,2,1]]. (↪→ Fn+2)

A.6 A bijection for 11fn = fn+4 + fn+2 + fn + fn−2 + fn−4:
We define the bijection φ11 : [11]×Fn −→ Fn+4 ∪Fn+2 ∪Fn ∪Fn−2 ∪Fn−4 below. This

bijection is a combinatorial interpretation of Equation (11). For (i, X) ∈ [11]× Fn, we define
φ11 by cases depending on the value of i.

If i = 1, then prepend [[1,1,1,1]] (↪→ Fn+4)
If i = 2, then prepend [[1,1,2]] (↪→ Fn+4)
If i = 3, then prepend [[1,2,1]] (↪→ Fn+4)
If i = 4, then prepend [[2,1,1]] (↪→ Fn+4)
If i = 5, then prepend [[2,2]] (↪→ Fn+4)
If i = 6, then prepend [[1,1]] (↪→ Fn+2)
If i = 7, then prepend [[2]] (↪→ Fn+2)
If i = 8, then do nothing (↪→ Fn)
If i = 9, then
• if X starts with [[1]], then change the [[1]]to [[1,1,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[ ]]. (↪→ Fn−2)

If i = 10, then
• if X starts with [[1]], then change the [[1]]to [[1,2,2]] (↪→ Fn+4)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,2,2]]. (↪→ Fn+2)
• if X starts with [[2,2]], then change the [[2,2]]to [[ ]]. (↪→ Fn−4)

If i = 11, then
• if X starts with [[1]], then change the [[1]]to [[2,1,2]]. (↪→ Fn+4)
• if X starts with [[2]], then change the [[2]]to [[1,2,1]]. (↪→ Fn+2)

A.7 A bijection for 12fn = fn+5 + fn−1 + fn−3 + fn−6:
We define the bijection φ12 : [12] × Fn −→ Fn+5 ∪ Fn−1 ∪ Fn−3 ∪ Fn−6 below. This

bijection is a combinatorial interpretation of Equation (12). For (i, X) ∈ [12]× Fn, we define
φ12 by cases depending on the value of i.

If i = 1, then prepend [[1,1,1,1,1]] (↪→ Fn+5)
If i = 2, then prepend [[1,1,1,2]] (↪→ Fn+5)
If i = 3, then prepend [[1,1,2,1]] (↪→ Fn+5)
If i = 4, then prepend [[1,2,1,1]] (↪→ Fn+5)
If i = 5, then prepend [[2,1,1,1]] (↪→ Fn+5)
If i = 6, then prepend [[1,2,2]] (↪→ Fn+5)
If i = 7, then prepend [[2,1,2]] (↪→ Fn+5)
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If i = 8, then prepend [[2,2,1]] (↪→ Fn+5)
If i = 9, then
• if X starts with [[1]], then change the [[1]]to [[1,1,1,1,2]] (↪→ Fn+5)
• if X starts with [[2,1]], then change the [[2,1]]to [[ ]]. (↪→ Fn−3)
• if X starts with [[2,2,1]], then change the [[2,2,1]]to [[2,2,2,2,2]]. (↪→ Fn+5)
• if X starts with [[2,2,2]], then change the [[2,2,2]]to [[ ]]. (↪→ Fn−6)

If i = 10, then
• if X starts with [[1]], then change the [[1]]to [[ ]]. (↪→ Fn−1)
• if X starts with [[2]], then change the [[2]]to [[2,2,2,1]]. (↪→ Fn+5)

If i = 11, then
• if X starts with [[1]], then change the [[1]]to [[2,1,1,2]] (↪→ Fn+5)
• if X starts with [[2]], then change the [[2]]to [[1,1,2,2,1]]. (↪→ Fn+5)

If i = 12, then
• if X starts with [[1]], then change the [[1]]to [[1,2,1,2]]. (↪→ Fn+5)
• if X starts with [[2,1]], then change the [[2,1]]to [[1,1,2,2,2]] (↪→ Fn+5)
• if X starts with [[2,2]], then change the [[2,2]]to [[2,2,2,2,1]]. (↪→ Fn+5)
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