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ABSTRACT

In 1970, Andrews proved a certain polynomial identity (which can be traced back to Schur)
and this identity, under appropiate limits, gives the celebrated Rogers-Ramanujan identities.
Andrews’ method forms the basis for many exciting developments in the last three decades.
In this paper, we give an alternative proof of this important result. The key ingredient of our
proof is also due to Andrews: it is a technique that Andrews used to prove a new formula for -
the Fibonacci numbers, dated back to the late 60s.

1. INTRODUCTION

In a recent feature article of this journal [8], C. E. Andrews, the world renowned expert
in the work of Srinivasa Ramanujan, points out many intriguing connections between the
Fibonacci numbers and the celebrated Rogers-Ramanjuan identities (see [1, 17, 25] for excellent
introductions to these identities). The starting point of these beautiful connections is the
following representations of the Fibonacci numbers (with a = 0, 1)

A= 3 (";7)- 2 (‘“"(L@J)’ )

0<j<n j=—00

where |z denotes the greatest integer not exceeding z. The first representation is well-known
(e.g., see [12, 23, 29]). The second representation is due to Andrews [2] and forms the basis of
the extensive study of generalized Fibonacci numbers [2] (cf. [24, 26]).

To obtain the Rogers-Ramanujan identities, we first g-deform (1) as follows (again, a =
0, 1):

o oC
8 s [y — P oo n+a
> o [ = 3 e o | ik |. @
0<i<n j==—o00 2

Note that these formulas are expressed in terms of the g-binomial numbers (or the Gaussian
polynomials)

[A] 0 if B<O0orB>A
= —gA)(1—gA~ 1) (1—gA—B+L .
H = (ql..)éfa)é’l_qil_l()l_,,fl_q) ) otherwise.

See [1, 9, 19, 27]. (2) can be traced back to Schur [33]. (See also an interesting generalization
due to Bressoud [18] and Chapman’s alternative proof [20]). In [3], Andrews gives a simpler
proof of (2); see also Rademacher’s book [31]. To arrive at the Rogers-Ramanujan identities,
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we simply take the limit n — co on both sides of (2). See [3]; cf. [8, 9]. It should be noted
that (2) forms the basis for many exciting developments in the past three decades; e.g., see [4,
5,6,7, 10, 11,13, 14, 15, 16, 18, 21, 22, 28, 30, 32, 34, 35, 36, 37].

Andrews’ strategy of proving (2)—a method that is widely used and generalized in later
development—is to show that both sidés of this equation satisfy the same difference equation
and have the same initial values; cf. [3]. On the one hand, it is relatively easy to handle the
sum on the left-hand side. On the other hand, it is much more difficult to deal with the sum
on the other side; one way to do this (cf. [3]) is to consider separately the case of even n and

the case of odd n for the sum on the right-hand side.

The purpose of this article is to show that Andrews’ method can be implemented without
considering separately the cases of even and of odd 7. The key ingredient of our alternate
route is due also to Andrews: it is a technique that Andrews used in his 1969 paper published
in this journal (2], in which he proves the new representations of £, in (1). In this approach
(Sect. 2), the fifth root of unity plays a key role. :

2. THE SET UP AND THE PROOF

Let us denote the left-hand side of (2) by En41(a) and the right-hand side by Dpi1(a).
Our goal is to show that both Ent1(a) and Dy (a) satisfy the same difference equation and
have the same initial values. This implies (2), ie., Eny1(a) = Dpyi(a).

Precisely, we need to prove that (with @ =0, 1)

En+1(a) = En(a) -+ qn+ah1En—1(a), (3)
El (a‘) = 17 (4)
Ey (G) = 1: (5)
and
Dnyi(a) = Dy(a) + qn+a—IDn—1(G): (6)
D;(a) =1, (7)
Ds(a) = 1. (8)
Remarks:

e For the proof of (3)-(5), see [3]. Below, we shall focus on the proof of (6)-(8).

e We have indexed the sums E,.;(a) and Dr+1(a) so that the initial values shown above
are all unity. These match their undeformed partners, namely F; and F,. But note that
E3(a) = Ds(a) and they are given by

1. 4 ql-;-a_ (9)

We shall comment on this below.
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The initial conditions, (7) and (8), can be easily verified by straightforward computations
from the definition of Dy, 41(a). However, it may be instructive to show (9). Indeed, for a = 0
we have

2

D0)= B (-1 42 [[2;251-]]

jF—00 2
2 1-4°
:(—1 qu[ :|=—“-—- =1+q

For the second equality, we have used the fact that only the j = 0 term does not vanish.
Similarly, we have for a = 1

D)= 3 (-1t IEn

j=—o00 2

_ (-1 -4%)

o

This time, we have two terms (j = 0,1) contributing to the sum. These verify (9).
Before we prove (6), we need to rewrite D, (a) as follows:

Lemma 1:

4
Doyi(e) = L—ﬂ Zﬁj(waa) Z-qfa(n+3a—2m)ﬁ—2mj [n -+ a]
5

m
j=0 m2>0
30 st GGl ot (10)
m>0
where
olc+1) 2
= iy 1
fa(o) 1 a0 (11)
Proof: First, we observe that —1 = (—1)® and so the right-hand side of (2) reads
& n-+a

D)= 3 (-1t | LS, . (12)

o=0 (mod 5) 2
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Next, we want to remove the mod 5 restriction on the sum. Here is the trick used by An-
drews [2]. Observe that, with 3 := e!(7/5)

4 .

1 : 1 ifo=0 (mod?5)
o = 13
5 ;ﬂ { 0 otherwise. (13)

This allows us to write (12) as

n—+a

Dra@ =130 3° (g0 | 2Le, ] o (1)
j=0o=—00

In order to ease the difficulty due to the floor function in the lower a.rgument of the g-binomial
numbers, we follow [2]. Define a new valuable A to replace n + 3a — o i.e.,

Ai=n + 3a — o.
This allows us to write (14) as
—1 n+da 4 ~ . .
Dn,--l—l(a) == L“%‘-‘-‘*ZZ(—])"QJ!“(“'*'E’“ A) |: [_:.EJ :| ﬂJU' (15)
i=0 A 2

Finally, we observe the following property of the floor function:

PzEJ B [gm;lJ B

This motivates us to break up the sum in (15) into the sum over the even A = 2m and the
sum over the odd A = 2m + 1. This ultimately removes the floor function and gives (10). O

It will be useful to write down similar expressions for Dy(a) and Dy_1(a):

m
S j=0 m>0

4
o) = - Sptesnn (52 omnemmngoim 4071

_ Z qfa(n+3a—2m—2)ﬁ—(2m+1)j [n +:T’_ 1] , (16)
m>0

4
Dn_1(a) _ (*1)"'4'3“ Zﬁj(n+3a—2) Z qfa(n+30—2m—2)ﬂ—2mj [n +a— 2]

m
b j=0 m>0

_ Z qfa(n+3a—2m—3)ﬂ—(2m+1)j [”’Jr;" 2] ‘ (17)
m>0 .
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The last ingredient for our proof is the following property of the g-binomial numbers (e.g.,
see Sect. 3.3 in [1], chap. 7 in [9], chap. 3 in [19] or chap. 6 in [27]):

[:’11 B [n'nﬁ%l} - [:1__11] -, (18)
o ] F e P i

With the above understood, we are ready for the proof of (6).

Proof of (6): Let’s look at (6) again (with an emphasis on the first term on the right-hand
side)
Dit1(a) = Dn(a) +--- .

This means we need to “produce” Dy (a) from the sum representing D, 1(a). To this end, we
do the following. Dpy1(a) in (10) consists of two sums over m. Let us apply (18) to replace
the g-binomial numbers in the second sum in D, 41(a), and (19) to replace the g-binomial
numbers in the first sum in D, 44(a). This gives

Dr11(a)
3a 4
_ (—1)5714- a Zﬁj(n+3a) ( Z qf,,(n+3a-—2m)ﬁ—2mj (I:ﬂ:r;i; 1:| . [n Jrﬂa;bﬁ 1] qm)
j=0 ' mZO
_ fa(n+3a—2m—1) g—(2m+1)j { [P+ a —1 nda—1| pemia
S 8 (e )+ rey e (20)
m_.

n a 4
_ e b Zﬁj(n+3a—1) Z gfe(mt3a=2m—1) g—2m; [ﬂ+ a— 1]

5 ; m
j=0 m>0

= Z qfa(n+3a.ﬁ2m)ﬁ—(2m_1)j |:'n, +a— 1]

50 m—1
(_‘1)n+3a A 3 30—2 ami | M+a—1
+ TZ:ﬁj'(n+ a) Z qfa(n-f- a m)»{»mﬁ— mj - ]
j=0 m>0
- fo(n+3a—2m)+n—m-+e g—(2m+1)j | T +a—1
Z>Oq B 2w il (21)
mi

Remarks: We organized the second equality as follows. Whenever we use (18) or (19), we
end up with two g-binomial numbers, one with an extra ¢ factor and one without. To obtain
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(21), we gather into the first big sum all the terms with g-binomial numbers that do not have
the extra g factor. This big sum, as we shall see shortly, is D, (a).

Next, we observe that some terms in (21) involve g-numbers with m — 1 being their lower
arguments. Let us shift the dummy indices to make m — 1 become m. This makes the first
big sum in (21) become D,, (a) (cf. (16)) and (21) now reads

Dnyi(a) = D, (a)+

4
& (*1)5n+3a Zﬂj(n+3a) Z qfa(n+3a-2m)+mﬁ—2mj [n +r?z - 1]
Jj=0 m>0

. Z qfa{-n+3ca-—2m—3)—m+n+a—-1ﬁ—(2m+3)j [n +a— 1:' . (22)

m
m2>0

It is clear that we need to make the last big sum in (22) become g"**1D,_1(a) in (6). To
this end, we apply (19) to expand the g-numbers in the second sum (over m). For the other
sum, we apply (18). This gives

Dpt1(a) = Dy(a)+

4
4 (_—-1)5““"‘1 Zﬁj{n+3a) Z qfu(n+3a—2m)+mﬁ—2mj

1=0 mzo

n+a—2 n n+a—2 gra—1-m
m m—1
4

_ et {=1)"Ts 3 pntaa) Y glelmt3a=2m—5)-mg-(2m+3);

3 =0 m>0

n+a—2 n+a—2| ..

(s Ul kg Ty @)

On the right-hand side of (23), focus on the terms that have the extra q factors after the
application of (18) and (19). Collect them together and this gives ¢"+*~1D,_, (a):

4
(—1)n+3ﬂ 7 (n+3a) fa(n+3a—2m)+m g—2mj |+ a — 2 n+a—1—-m
e Zoﬁ Z}OQ i m1 lg
i= m2

4
_ qn+a—1 (_l)nﬁi Zﬁj(n+3a) Z qfa_(n+3a—2m—3)—mﬁ—(2m+3)j [n‘ +a— 2:' q"
5

F=0 m>0 m
N e (n+3a—2) fa(n+3a—2m—2) g—2mj [+ a —2
=gt N > g B
9 =0 m>0 m

4
_gntent (ﬁl)s"”“ 3 B30 3 o fomtta-2mm9) g (ame1); [ nta- 2}
j=0 m>0

= qn+a_1Dn—l(a)‘
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Above, we shifted the dummy indices from m — 1 to m to obtain the first equality. Then, by
comparing to (17), we obtain the second equality.

To proceed, we note that there is another sum (over m) in (23) that has g-binomial
numbers with the lower argument being m — 1 (but does not have the extra g factor due to
the application of (19)). Again, we need to shift the dummy indices in this sum as follows:

4
_ (_1)5n+3a Zﬁj(n+3a.) Z qfa(n+3a.--2m-—-3)+n+a—l—mﬁ—-(2m+3)j [TL +a— 2:|

izo >0 m—1
4
(=1t j(n+3a) fa(n+3a—2m—5)+n+a—2—m g—(2m+5)j | *+a — 2
:_—5.7(2)6]“ a Z>Oq n+3a—2m n+a g~ (3mtb)) .
j=0 m>

4
S (*1)511+3CL Zﬁj(n+3a) Z qfu('n-+3a.—2m—-5)+n-+-a—2—mﬁ—2mj [n ta— 2] )

m
3=0 m>0

Note that the difference between the second and the third lines lies in the exponent of 3: the °
“5” disappears in the third line. This is because 8 = e*(27/5) and therefore 8% = 1.

The foregoing discussion allows us to write (23) as
Dr+1(a) = Dy(a) + ¢"** ' Dp_i(a) + Ag(a),

where

An(a) = (s Z i (n-+3a=2m) [n +a— 2]
5 ; m
im

(gf“ (n+3a—2m)+m _ qfa(n+3a—2m—5)+n+a—2—m) .

If An(a) is zero, we are done. And this is easy to verify. From the definition of f,(o) (cf.
(11)), a direct calculation shows that

famn+3a—-2m)+m=fo(n+3a—-2m—-5)+n+a—2-m

and so
qf“ (n+3a—2m)+m __ qf"‘ (n+3a—2m—5)+n+a—2-m _ 0.

This makes A, (a) vanish and the desired result is proven. 0O
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