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ABSTRACT

Gould’s Star of David Theorem is a remarkable result that has generated much interest
and a substantial literature since it first appeared in 1971. Extensions of the theorem have
been proved for some hexagons of coefficients in Pascal’s triangle (and generalizations thereof)
having an even number of coefficients per side and for some with an odd number of coefficients
per side, as well as for some other configurations. Almost all of these results are for small
configurations involving only a limited number of coefficients per side. Here we prove a similar
result for a hexagon with an arbitrarily large number of entries on two parallel sides and two
coefficients on each of the other four sides.

1. INTRODUCTION

The surprising GCD Star of David Theorem was conjectured by Gould [4] in 1972 and
first proved by Hoggatt and Hillman [5]. During the intervening years a substantial number
of alternative proofs and interesting generalizations and related results have been added to
the literature. The outstanding conjecture (see [9]) is that if S = S; U S, denotes the set
of binomial coefficients numbered consecutively around an arbitrary “hexagon” of binomial
coefficients with sides along the horizontal rows and main diagonals of Pascal’s triangle and
with an even number of coefficients per side, and if S; denotes the set of odd numbered
coefficients and S, denotes the set of even numbered coefficients, then GCD(S;) = GCD(S5)
where GCD(S;) denotes the greatest common divisor of the elements of S;, i = 1,2.

Let (m,2,2,m,2,2) denote a convex hexagon of binomial coeffiecients with m adjacent

coefficients along the top and bottom rows and two adjacent coeflicients along each of the
other four sides as in Figure 1. The equality of the GCDs of

(’:) (r-t1) (r-tz) e (r+:1—2) (r+f~.—1)
k+1 k+1
(r) k+2 k+2 k+2 k+2 k+2 (T+m)
(ril (r-::2 (r:|'-3) e (r-}-v:—l (r-{-'-m)
Figure 1

the two sets S; and Ss of odd and even numbered coefficients numbered consecutively
around the (2m,2,2,2m,2, 2) hexagon situated arbitrarily in Pascal’s triangle and for the
same hexagons rotated 120° and 240° was proved by Korntved [6] and also follows imme-

diately from Lemmas 1 and 2 below. In the present paper, we consider similarly placed
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(2m +1,2,2,2m + 1,2, 2) hexagons with vertices a1,a2,as,... ,82m+2,b1,b2,b3,... ;bom 42 as
indicated in Figure 2. With a; = (*) and s =n —r. We set S, = {a;|1 < i < 2m + 2} and
Sy = {b;|1 < i < 2m + 2}. Our purpose is to show that GCD(S,)=t-GCD(S;) with ¢t =1 or
t = 2 and to specify whent =1 and £ = 2.

ay bl a9 b2 2 % Qm bm Am+1
bam+2 ¢ Yy & bm+1
02m+2 bam+1 G2m+1 bomn ' @m+3 bmi2 Gmi2
Figure 2.

2. NOTATION AND PRELIMINARY RESULTS

Let p be a prime and let v = vp(a) denote the p—adic valuation of a. If a is a rational
number, then a = p¥a/b where (a,p) = (b,p) = 1. If @ = n is an integer then p”||n; i.e. p|n
and p*! fn. Moreover, it is clear that

v(1) =0 1)
v(af) = v(a) +v(f) )
v(e/B) = v(a) —v(f) 3)
v(a + ) > min(v(a),v(8)) Vo, p (4)
v(e + B) = min(v(a),v(B)) if v(a) # v(B). (5)
Also, .
GCD(m1,ma,...,mg) = Hpmi“(”(m‘)""’”(m")) . (6)
plm

where m = Hf=1 m;. Finally, the following two easily proved lemmas (see[2]) are needed.

Lemma 1: In the three cases shown, if z,y, z are adjacent coefficients in Pascal’s

& y T z z z

-1 Y Y
triangle, then GCD(z, ) = GCD(z, y, 2).

Lemma 2: In the two cases shown, if z,y, z, w are coefficients in Pascal’s triangle with z,y, 2
adjacent to w,

then GCD(z,y, ) = GCD(z,y, 7w).
3. THE MAIN RESULTS

Theorem 1: In the hexagon of Figure 2, GCD(S,) = t- GCD(S;) with ¢ = 2, if and only if r
and s are odd and va(r + 2h — 1) = va(s — 2k +3) for 1 < h < m + 1. Otherwise, t = 1.
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Proof: We first show that GCD(S,) < GCD(S,). Suppose d = GCD(S3). Then db;, 1 <
t < 2m+2. But then, by Lemma 2, d|z in Figure 2. Now, using Lemma 1 repeatedly, we obtain
in order d|ay, d|azm+2, d|y, d|as, d|z, d|azm+1 and so on. Then, finally, dja;, 1 <4 < 2m + 2
and hence GCD(S,)|GCD(S,) and GCD(S,)<GCD(S,).

Next let p denote a prime and let vp(T) = min{v,(t)|t € T}. Assume that vp(Sp) <
Up(Sa). Let e = vup(SeU{b1}). Then p®a;, 1 < i< 2m+2, and p°|b;. Referring to Figure 2 and
using Lemma 1, we have successively that p®|z, p®|bam+2, P°|y, P®|bam1, P%|2, P%|ba, . .., P%|bom.
Thus, p®|b; for 1 < i < 2m + 2, and

Up(Sa U{b1}) < vp(Sa U Sp) < vp(S3).

But, by assumption, v,(S5) < v5(S,), and hence vy(b1) = vp(S). Since a; = (), it follows

that a; = by, a9 = i—;%bl, and agm4s = E{%%Z)bl. But then, since v,(b1) = v,(Ss) <

9p(Sa), it follows that wv,(TtL) > 0, vp(%) >0, and vp(%’%&l) > 0. Hence, by (3),
vp(s) < vp(r+1) and v,(r+2) < vy(s—1), and p|ls—1, p|r+1, pfs, p|n, pfn+ 1. This implies

that
» (e )= (539)>

and hence vp(s + 1) < vp(n +2). Therefore, p|n + 2. But p|n, so p = 2. Therefore, v,(S,) >
vp(Sa) if p is odd. But from above GCD(S;) < GCD(S,). Thus, vp(Sp) < vp(8,), and so
vp(Sy) = vp(8S,) for p odd. It follows, therefore, that GCD(S,) = t-GCD(S,) with ¢ = 2% k >
0.

We now take v = vz and continue to assume that v(Sy) < v(S,). Then, since v(b;) =
v(S5), it follows that v(b;) < v(a1) and v(b1) < v(az), and this implies that 2|r+1 and 2|s —1.
But then 2fn; so n is even and r and s are odd. If ¢t > 4 then 4|r + 1, 4|s — 1 and 4|n so
that 2[|s + 1 and 2||n + 2. Therefore, since s and n + 1 are odd, v(azm+2) = v(b1) = v(S;) as
above, and this is a contradiction. Thus ¢ = 2. Moreover, we observe that the above argument
can be repeated for each b;, 2 < 7 < m, with only minor changes, leading in each case to the
conclusion that, if GCD(S;) < GCD(S,) then GCD(S,) = 2-GCD(S;). We need only consider

@m+2; @m+3,- .. ,82m+2 to see when this is so. In fact, we determine conditions under which

v(ap) > v(Sy) for m+2<h<2m+2. Since agmyz = (”'—i'(l_g)(T’;'*rt")bl and v(b;) = v(Sh),

v(aom+2) > v(Sp) iff v(azm42) > v(b1) iff v(n+2) > v(s+1) iff v(s+1) = v(r+ 1) by (5).
Similarly azm41 = {£ERE4 b, and v(ba) = v(S), v(azm+1) > v(Ss) Iff v(azmya) > v(by) iff
v(n+2) >v(s—1) iff v(s — 1) = v(r +3). Continuing in this way, we have that v(azm43_p) >
v(Sp) iff v(azm4a—n) > v(bp) iff v(s —2h+ 3) = v(r + 2h — 1) for 3 < h < m. That this is
also true for h = m + 1 follows from a similar argument involving am+2 and by,+1. Therefore,
in order that GCD(S,)=2 GCD(S,), it is necessary that v(s — 2h + 3) = v(r + 2h — 1) for
1<h<m+1 as claimed.

We now show that these conditions are sufficient to give ¢ = 2. Since a; = b, and

r and s are odd, it follows that v(ai) > v(by) > v(Sy). Moreover, ay = 82443 . bp—y for

2<h<m+1. And again, r and s odd imply that
'u(ah) > 'U(b,p,_l) > ‘U(Sb).
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Therefore, v(an) > v(Sp) for 1 < h < m+1. Similarly, as noted above, asmin = L"—i'%}"—m-bl,

80 v(azmi2) = v((“—‘:(lsl%')'"—zl +b1) = v(%2 - by) since n + 1 and s are odd. But n+2 = (r + 1)
+(s+1), and the first of the above conditions with h = 1 gives v(s+1) = v(r+1). This implies
that v(n + 2) > v(s + 1) and hence that v(azm+2) > v(b1) > v(S;). Similarly, asmis_p =

2 5
TR *Ohs 50 v(aama—n) = v(eriit Rl bo1) = o( 52y buoa) since

n+1and r42h—2 are odd. But n+2 = (s—2h+3)+(r+2h—1) and v(s—2h+3) = v(r+2h—1),
s0 v(n +2) > v(r + 2k — 1) and v(azmta—n) > v(bn—1) > v(Ss) for 2 < h < m + 1. Thus, it
follows that v(S,) = min{v(a;)|1 < i < 2m + 2} > v(S;) and that ¢ = 2 as claimed. This
completes the proof.

Now, for subsequent use, consider the sequence V of 2-adic valuations of the everr positive
intergers as shown here.

E|([2]4]6(8]/10|12|14|16|18]20]22[24]26[28]30(32
Vif1j2(1{3|1(2|1|4]1[2|1]|3[1]2]1]5

3436|3840 |42|44|46 |48 |50(52|54[56[58[60[62(64...
1141 ]3]L{2({L{4]1 121118 (11211 6.

It is easy to see that the following assertions regarding V are true.

o The integers e; for which v(e;) = k (i.e., for which e; = ¢ - 2% with t odd) are just the
integers congruent to 2 modulo 2541 . '

e The 2* — 1 consecutive entries in V centered at v(e;) = k form a finite symmetric subse-
quence of V' with a single maximum at v(e;) .

e The symmetric subsequence of V' centered at v(e;) = k is precisely the same as the
symmetric sequence of length 2 — 1 starting at ¥(2) = 1 and centered at v(2¥).

Now it turns out that the conditions of Theorem 1 can be given in a somewhat more
transparent form. Before doing so it will be useful to consider a couple of examples. As above,
we here take v = vs.

Example 1: m=1

a1 by a
ba ba
aq bs as

In this case, we have from Theorem 1 that, for GCD(S,) = 2-GCD(S), it is necessary
and sufficient that r and s be odd and v(r +2h — 1) = v(s — 2h + 3) for 1 < h < 2; i.e., that
vu(r+1) = v(s + 1) and v(r + 3) = v(s — 1). This can be accomplished in one of two ways.
One or the other of the sequences

v(r+1), v(r+3)

I
v(s—1), v(s+1)
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or

v(r+1), v(r+3)
|

v(s —1), v(s+1),

where the middle terms in each case are the equalities determined by h = 1 and h = 2
respectively, must be symmetric. Since both are of length three and the first symmetric
subsequence of V of length 3 is centered at v(22), it follows from the preceding comments
about V' that the first case can be accomplished if and only if

r+l1=s8+1=2% (mod 25+Y), k> 2,
and the second can be accomplished if and only if

r+3=5—1=2% (mod 21, k> 2.

Example 2: m=2

ar b1 ax b2 a3
b5 b3
Qg b5 as b4 a4

Here we must have v(r +1) = v(s +1), v(r + 3) = v(s — 1) and v(r + 5) = v(s — 3). Hence the
possibilities are that one of the sequences

v(r+1), v(r+3), v(r+5)

|
v(s—3), v(s—1), v(s+1)

or

v(r+1), v(r+3), v(r+5)
| I I
v(s—3), v(s—1), v(s+1)
or

v(r+1), v(r+3), v(r+5)

I
v(s —3), v(s—1), v(s+1)

where the middle terms in each case are the equalities determined by h=1, h =2, and h =3
respectively, must be symmetric. Since the first symmetric subsequences of V' of length 5 and
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3 respectively are centered at v(23) and v(22), it follows that GCD(S,) = 2-GCD(S) if and
only if

r+1 = s+1 = 2 (mod2F?), k>2,
r+3 = a=1 = 28 (mod2®!), k22, ar
r4+5 = g8 = P (medP*H), E>2

hold.
We now state the general theorem.

Theorem 2: Let g be the greatest integer such that 2¢ <m+ 1 and let j = m +1 — 2%. For
the hexagon of Figure 2, GCD(S,) = t-GCD(S;) with ¢ = 1 or 2. In order that t = 21t is
necessary and sufficient that

r+3h—1=8—28+3=2% (mod2"

withk>g+1forl<h<jorm+2-j<h<m+l,andk>g+1lforj<h<m+2-—j.
In case j = 0, all congruences hold for k > ¢ + 1.

Proof: That ¢t = 1 or t = 2 is shown in Theorem 1. We now consider when ¢ = 2. Clearly,
any positive integer m can be expressed uniquely in the form stated in the theorem. Moreover,
as in the examples, the equalities of Theorem 1 give rise to m + 1 symmetric subsequences of
V of length

_[2m+1-2h-1), 1 =
A on-1, mil o p <1,

Also, it follows from the above remarks about V that the central term in each subsequence
has a maximum value at the equality (determined by h) chosen to form the subsequence.
The question is where these subsequences can be located in V, and this is determined by
the first symmetric subsequence of V (necessarily located at v(2*) for some integer ¢ > 1)
sufficiently long to contain the subsequence in question as in the above examples. First consider
£, =2m—1—-2(h—1) for 1 < h < j. Clearly

£, =291 — (2h—1)+ 25
229 — (25 - 1)+ 25
=g 4 1

and

<2 14925
<ot 14901 - g8,
Thus the first symmetric subsequence of V that contains the subsequences for these values
of h is the one of length 292 — 1 centered at v(2772) since the longest shorter symmetric
subsequence of V is only of length 2¢+1 — 1. But this implies that, for these values of h,
ripOH -] = a— 2R L8 =2% [mod2*tY), B>gtl
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as claimed. Moreover, entirely similar arguments show that
297 4+ 1<, <22 1 for m+2—j<h<m+1
implying, as above, that
r+2h—-1=5-2h+3=2F (mod 2**!), k>gq+1

for these values of h; and that

m+ 1

294+1<£, <27 -1 for j<h<

and

99 < g, <29+ _1 for M1

<h<m+2-j
which together imply that

T+2h—1=5-2h+3=2F (mod 2¥*!), k>q+1
for j < h <m+2— j. Finally, if § = 0, then m = 29 — 1 and we still have

- 2m+1-2(h-1), 1<h<m=H
h = s | Sm

2h -1, mH o h<m+1.

And again we can show, as above, that

294 1<, <291 _1 for 15};5-"%1

and

1
2 <, <2 _1 for Bt ch<m+1

implying that
r+2h+1=8—-2h+3=2* (mod 2¥'), k>gq+1
foril<h<m+1.

This completes the proof, and we note that similar resylts can be obtained for the hexagon
considered here but rotated by 120° and 240°.

Finally, we would like to thank the referee for helpful critical remarks that corrected
several errors in our original submission.
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