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ABSTRACT

We present two infinite products of nested radicals involving Fibonacci and Lucas num-
bers. These products resemble Vieta’s classical product of nested radicals for 2/7. A modern
derivation of Vieta’s product involves trigonometric functions, while our product involves sim-
ilar manipulations involving hyperbolic functions.

The beautiful infinite product of radicals

o

due to Vieta [1] in 1592, is one of the oldest noniterative analytical expressions for . It is the
purpose of this note to prove the following two Vieta-like products
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for N odd. Here N is a positive integer, Fiy and Ly are the Fibonacci and Lucas numbers,

and ¢ = _1_+2ﬁ is the golden section.
First we must explore a few exact values of the hyperbolic functions. Notice that

N
J-smh(N log ¢) = ( Nlogé _ g~Nlog¢) = 7 (qﬁN - (%) ) =Fy for even N. (This

n
last equality follows from Binet’s formula [2], F, = % (cf)“ - (—% ), true for all positive
N
n.) For odd N we have 2sinh(N log ¢) = eV 1089 — g=Nlogd — ¢V _ (%) = Ly. (This last
AT
equality follows from the Binet-like formula L, = ¢™ + (—%) , which is true for all positive

n.) Thus we have derived

‘/TEFN for N even
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Ly for N odd

sinh(N log ¢) = {
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In a similar way we can derive

1Ly  for N even

: 5
Yspy for N odd )

cosh(Nlog ¢) = {
Notice that in some ways the number log ¢ acts with the hyperbolic functions as = does with
the trigonometric functions. The hyperbolic functions of certain rational multiples of log ¢ can
be expressed as exact values.

To derive (2) and (3) we start by applying the double angle formula for the hyperbolic
sine function p times to obtain :

. r ., .z
sinh = 2 cosh — sinh —

2 2
= 22 cosh ; cosh ;—2 sinh -;%
= 2% cosh % cosh ;—2 cosh ;—3 sinh 5335
sinh z = 2P cosh gcosh % cosh % -+ -cosh gp- sinh ;—p. (6)

We evaluate each of the hyperbolic cosine factors in (6) in terms of coshz by repeated use of
the half-angle formula for the hyperbolic cosine.

z 1 141 .1 j1 1 /1 1
cosh —=,|-+5 —+—\/~—+---+— =+ zcoshz. (7)

(p radicals)

Combining (7) with (6) and dividing by = we obtain
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If we let p tend to infinity we get (since lim,o(sinha)/a = 1),

(n radicals)’

1 1
3 + Ecoshw.

b | =

(8)

Now let = N log ¢ in (8) and use (4) and (5) to obtain at once our desired products (2) and

(3). This completes our proof.

It is interesting to notice that a common derivation of the original Vieta product (1)
proceeds like our derivation of (8) with hyperbolic functions of z replaced by trigonometric
functions of §. In the final step where we set £ = N log ¢ in the hyperbolic functions to obtain
(2) and (3), one sets 6 = m/2 in-the trigonometric functions to obtain (1).

This note was motivated by a discussion with Richard Askey in which he showed how the
Fibonacci and Lucas numbers are related to the hyperbolic functions.
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