CATALAN NUMBERS, FACTORIALS, AND SUMS OF ALIQUOT PARTS

Douglas E. Iannucci

Division of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI 00802, USA
e-mail: diannuc@uvi.edu

Florian Luca
Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México e-mail: fluca@matmor.unam.mx
(Submitted February 2007-Final Revision July 2007)

Abstract

Let \mathcal{A} be the set of all Catalan numbers and factorials. In this note, we look at positive

 integers $n \in \mathcal{A}$ whose sum of aliquot parts also belongs to \mathcal{A}.
1. INTRODUCTION

For a positive integer n we write $\sigma(n)$ for the sum of all the positive integer divisors of n and $s(n)=\sigma(n)-n$ for the sum of proper divisors of n. We recall that $s(n)$ is sometimes referred to as the sum of aliquot parts of n. A number n is called perfect if $s(n)=n$. If n is not perfect but $s(s(n))=n$, then the pair $(n, s(n))$ is called amicable. More generally, an aliquot cycle of length k is a cycle of k positive integers $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ such that if we set $n_{k+1}:=n_{1}$ then $n_{i}=s\left(n_{i-1}\right)$ holds for all $i=2, \ldots, k+1$. It is conjectured that any positive integer n belongs to some aliquot cycle of length k for some positive integer k.

In this paper, we fix certain infinite subsets of positive integers, say \mathcal{A} and \mathcal{B} and we try to determine all $n \in \mathcal{A}$ such that $s(n) \in \mathcal{B}$. Our sets \mathcal{A} and \mathcal{B} will be the subsets of all Catalan numbers or factorials. Recall that a Catalan number is a number of the form $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ for integer $n \geq 0$. Finally, a factorial is simply a positive integer of the form $n!$ for some integer $n \geq 0$.

We record our results as follows.
Theorem 1: The only solutions in positive integers (n, m) for the equation

$$
\begin{equation*}
s\left(C_{n}\right)=m! \tag{1}
\end{equation*}
$$

are the trivial solutions $(2,1)$ and $(3,1)$.
Theorem 2: The only solution in positive integers (m, n) for the equation

$$
\begin{equation*}
s(m!)=C_{n} \tag{2}
\end{equation*}
$$

is the trivial solution $(2,1)$.
Theorem 3: The only solutions in positive integers (n, m) for the equation

$$
\begin{equation*}
s(n!)=m! \tag{3}
\end{equation*}
$$

THE FIBONACCI QUARTERLY
are the trivial solutions $(2,1)$ and $(3,3)$.
Theorem 4: The only solutions in positive integers (n, m) for the equation

$$
\begin{equation*}
s\left(C_{n}\right)=C_{m} \tag{4}
\end{equation*}
$$

are the trivial solutions $(2,1)$ and $(3,1)$.
Throughout this paper, for a positive integer k we write $v_{2}(k)=\alpha$ if $2^{\alpha} \| k$. We refer to $v_{2}(k)$ as the 2-valuation of k. We also let $\ell_{2}(k)$ denote the sum of the binary digits of k. We shall use the obvious inequality

$$
\ell_{2}(k) \leq \frac{\log k}{\log 2}+1
$$

as well as the known fact that

$$
v_{2}(k!)=k-\ell_{2}(k) .
$$

We finally let $\pi(k)$ denote the number of primes $p \leq k$.

2. PROOF OF THEOREM 1

First we compare the 2 -valuation of both sides of (1). Since

$$
\begin{aligned}
v_{2}\binom{2 n}{n} & =v_{2}((2 n)!)-2 v_{2}(n!) \\
& =2 n-\ell_{2}(2 n)-2 n+2 \ell_{2}(n) \\
& =\ell_{2}(n) \leq \frac{\log n}{\log 2}+1,
\end{aligned}
$$

we have

$$
\begin{equation*}
v_{2}\left(C_{n}\right)=v_{2}\binom{2 n}{n}-v_{2}(n+1) \leq v_{2}\binom{2 n}{n} \leq \frac{\log n}{\log 2}+1 . \tag{5}
\end{equation*}
$$

Since C_{n} is divisible exactly once by all primes p such that $n+1<p \leq 2 n$, we have

$$
v_{2}\left(\sigma\left(C_{n}\right)\right) \geq \sum_{n+1<p \leq 2 n} v_{2}(p+1) \geq \pi(2 n)-\pi(n+1) .
$$

Since

$$
\begin{equation*}
\pi(2 n)-\pi(n+1) \geq \frac{n}{2 \log n} \tag{6}
\end{equation*}
$$

for all $n \geq 7$ (see Rosser and Schoenfeld [1]), we have

$$
\begin{equation*}
v_{2}\left(\sigma\left(C_{n}\right)\right) \geq \frac{n}{2 \log n}, \quad \text { whenever } n \geq 7 \tag{7}
\end{equation*}
$$

For $n \geq 54$ we also have

$$
\frac{n}{2 \log n}>\frac{\log n}{\log 2}+1
$$

Thus, by (5) and (7), we have $v_{2}\left(\sigma\left(C_{n}\right)\right)>v_{2}\left(C_{n}\right)$, and so again if $n \geq 54$ we get

$$
\begin{equation*}
v_{2}\left(\sigma\left(C_{n}\right)-C_{n}\right)=v_{2}\left(C_{n}\right) \leq \frac{\log n}{\log 2}+1 . \tag{8}
\end{equation*}
$$

We also have

$$
\begin{equation*}
v_{2}(m!)=m-\ell_{2}(m) \geq m-\frac{\log m}{\log 2}-1 . \tag{9}
\end{equation*}
$$

Next, we obtain a lower bound for the left-hand side of (1). Since C_{n} is divisible exactly once by all primes p such that $n+1<p \leq 2 n$, we have

$$
\sigma\left(C_{n}\right) \geq C_{n} \prod_{n+1<p \leq 2 n}\left(1+\frac{1}{p}\right) \geq C_{n}\left(1+\frac{1}{2 n}\right)^{\pi(2 n)-\pi(n+1)},
$$

and so, by estimate (6), we have

$$
\sigma\left(C_{n}\right) \geq C_{n}\left(1+\frac{1}{2 n}\right)^{\frac{n}{2 \log n}}, \quad \text { whenever } n \geq 7
$$

Taking logarithms in the last inequality above we get

$$
\begin{aligned}
\log \left(\sigma\left(C_{n}\right)\right) & \geq \log C_{n}+\frac{n}{2 \log n} \log \left(1+\frac{1}{2 n}\right) \\
& \geq \log C_{n}+\frac{n}{2 \log n}\left(\frac{1}{2 n}-\frac{1}{8 n^{2}}\right) \\
& =\log C_{n}+\frac{1}{2 \log n}\left(\frac{1}{2}-\frac{1}{8 n}\right)
\end{aligned}
$$

THE FIBONACCI QUARTERLY
equivalently,

$$
\begin{equation*}
\sigma\left(C_{n}\right) \geq C_{n} \cdot \exp \left(\frac{1}{4 \log n}-\frac{1}{16 n \log n}\right) \tag{10}
\end{equation*}
$$

Recalling the known inequality

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \geq \frac{2^{2 n}}{(n+1)^{2}},
$$

we get

$$
\begin{aligned}
\sigma\left(C_{n}\right)-C_{n} & \geq C_{n} \cdot\left(\exp \left(\frac{1}{4 \log n}-\frac{1}{16 n \log n}\right)-1\right) \\
& \geq \frac{2^{2 n}}{(n+1)^{2}} \cdot\left(\exp \left(\frac{1}{4 \log n}-\frac{1}{16 n \log n}\right)-1\right) \\
& \geq n^{2 \log n \log \log n} .
\end{aligned}
$$

The last inequality claimed above holds for all $n \geq 28$. We have thus shown that if $n \geq 54$ then

$$
\begin{equation*}
\sigma\left(C_{n}\right)-C_{n} \geq n^{2 \log n \log \log n} \tag{11}
\end{equation*}
$$

In particular, $m!>n^{2 \log n \log \log n}$, which for $n \geq 54$ implies that $m \geq 10$. By (1), (8) and (9), we have, for $n \geq 54$,

$$
\frac{\log n}{\log 2}+1 \geq m-\frac{\log m}{\log 2}-1,
$$

which implies $n \geq 2^{m-2} / m$. Since $2^{m-2} / m>e^{\sqrt{m}}$ for $m \geq 10$, we have

$$
\begin{equation*}
n \geq e^{\sqrt{m}}, \quad \text { whenever } \quad m \geq 10 \quad \text { and } \quad n \geq 54 . \tag{12}
\end{equation*}
$$

Finally, by (11) and (12), we get that if $n \geq 54$, then

$$
\begin{aligned}
\sigma\left(C_{n}\right)-C_{n} & \geq n^{2 \log n \log \log n} \\
& \geq\left(e^{\sqrt{m}}\right)^{\sqrt{m} \log m} \\
& =m^{m}>m!,
\end{aligned}
$$

which contradicts (1). Thus, any solutions to (1) must be in the range $n<54$. Computation then reveals that the only such solutions are $(n, m)=(2,1)$ and $(3,1)$.

3. PROOF OF THEOREM 2

Recalling (9), we have

$$
v_{2}(m!) \geq m-\frac{\log m}{\log 2}-1 .
$$

Since m ! is divided exactly once by all primes p such that $m / 2<p \leq m$, we have

$$
\begin{aligned}
v_{2}(\sigma(m!)) & \geq \sum_{\frac{m}{2}<p \leq m} v_{2}(p+1) \geq \pi(m)-\pi(m / 2) \\
& \geq \frac{m}{3 \log m}
\end{aligned}
$$

(again, see Rosser and Schoenfeld [1]) for $m \geq 18$. Since

$$
m-\frac{\log m}{\log 2}-1>\frac{m}{3 \log m}
$$

for $m \geq 4$, we have that for all $m \geq 18$,

$$
\begin{equation*}
v_{2}(\sigma(m!)-m!) \geq \frac{m}{3 \log m} . \tag{13}
\end{equation*}
$$

On the other hand, recalling (5), we also have

$$
v_{2}\left(C_{n}\right) \leq \frac{\log n}{\log 2}+1 .
$$

Therefore (13) and (5) together imply that for $m \geq 18$ we have

$$
\frac{\log n}{\log 2}+1 \geq \frac{m}{3 \log m} .
$$

Note that for all $m \geq 225$ we also have that $m>3 \log m(3+2 \log m)$, which in turn implies that

$$
\frac{m}{3 \log m}>3+2 \log m .
$$

Thus, for $m \geq 225$, we have

$$
\frac{\log n}{\log 2}+1>3+2 \log m
$$

The above inequality implies that $\log n>2+2 \log m>4 m \log m$, which in turn leads to $n \log 2>2 m \log m$, or,

$$
2^{n}>m^{2 m}
$$

Since $m \geq 225$, the last inequality above certainly implies that $n \geq 7$. But for $n \geq 7$ we also have

$$
C_{n}>\frac{2^{2 n}}{(n+1)(2 n+1)}>2^{n},
$$

and so

$$
s(m!) \leq \sum_{k=1}^{m!-1} k=\frac{m!(m!-1)}{2}<\frac{m^{m}\left(m^{m}-1\right)}{2}<m^{2 m} .
$$

Thus, we get the contradiction $C_{n}>2^{n}>m^{2 m}>\sigma(m!)-m!$ if $m \geq 225$. Computation now shows that the only solution to (2) in the remaining range $m \leq 224$ is $(n, m)=(2,1)$.

4. PROOF OF THEOREM 3

We shall assume (3) holds for $n \geq 4$; it is easy to see that the only solutions when $n \leq 3$ are those stated in Theorem 3. Thus $12 \mid n!$, and so $n!$ is abundant; this implies $s(n!)>n!$, and so by (3)

$$
\begin{equation*}
m!>n!. \tag{14}
\end{equation*}
$$

Next, we note that

$$
\sigma(n!)=n!\sum_{d \mid n!} \frac{1}{d}<n!\sum_{k=1}^{n!} \frac{1}{k}<n!(1+\log n!)<n!(1+n \log n) .
$$

Thus we get $s(n!)<n!\cdot n \log n<n!\cdot n^{2}<(n+2)$!. Thus by (3) and (14),

$$
n!<m!<(n+2)!
$$

which implies $n<m<n+2$. Hence, we have $m=n+1$. Thus, (3) becomes $s(n!)=(n+1)$!, or, equivalently, $\sigma(n!)=n!(n+2)$. We may state this as

$$
\begin{equation*}
\frac{\sigma(n!)}{n!}=n+2 \tag{15}
\end{equation*}
$$

The function $\sigma(n) / n$ is multiplicative and for prime p and $a \geq 1$ we have

$$
\frac{\sigma\left(p^{a}\right)}{p^{a}}=1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{a}}<\sum_{k=0}^{\infty} \frac{1}{p^{k}}=\frac{p}{p-1}
$$

Therefore

$$
\frac{\sigma(n!)}{n!}<\prod_{p \leq n} \frac{p}{p-1}<e^{\gamma} \sum_{k=1}^{n} \frac{1}{k},
$$

the right hand inequality following for all $n \geq 1$ by equation (3.31) in Rosser and Schoenfeld [1]-note here that γ denotes Euler's gamma constant. As

$$
\sum_{k=1}^{n} \frac{1}{k}<1+\log n,
$$

we get by (15),

$$
n+2<e^{\gamma}(1+\log n),
$$

but this statement is clearly false when $n \geq 4$, which we assumed. Therefore the only solutions to (3) are $(m, n)=(2,1)$ and $(3,3)$.

5. PROOF OF THEOREM 4

In (4), we shall assume that $n=m \pm t$ for some nonnegative integer t. Our immediate goal is to obtain a bound on t. It is easy to see that $C_{m+1} / C_{m} \geq 3$ for all m. In fact,

$$
\begin{equation*}
\frac{C_{m+1}}{C_{m}}=\frac{4 m+2}{m+2} \in[3,4), \quad \text { whenever } m \geq 4 \tag{16}
\end{equation*}
$$

We now consider two cases separately, namely when $m \geq n$ and when $m<n$, respectively.
If $m \geq n$, then by (16), we have $C_{m}=C_{n+t} \geq 3^{t} C_{n}$. Furthermore, since

$$
\sigma\left(C_{n}\right)<C_{n} \sum_{k=1}^{2^{2 n}} \frac{1}{k}<C_{n}(1+2 n \log 2),
$$

we have

$$
3^{t} C_{n} \leq C_{m}=s\left(C_{n}\right)<C_{n}(2 n \log 2)<2 n C_{n},
$$

which implies

$$
\begin{equation*}
t<\frac{\log 2 n}{\log 3} \tag{17}
\end{equation*}
$$

Assume now that $m<n$. Recall that, by estimate (10), we have that

$$
C_{m}=s\left(C_{n}\right) \geq C_{n}\left(\exp \left(\frac{1}{4 \log n}-\frac{1}{16 n \log n}\right)-1\right)>\frac{3 C_{n}}{16 \log n},
$$

whenever $n \geq 7$, where in the rightmost inequality above we used the fact that $e^{x}-1>x$ holds for all positive numbers x. Thus, by containment (4), we get

$$
\frac{C_{n}}{4^{t}} \geq C_{m}=s\left(C_{n}\right)>\frac{3 C_{n}}{16 \log n},
$$

and so $3^{t}<4^{t}<(16 \log n) / 3<2 n$, where the last inequality holds for all $n \geq 2$. This gives us again that $t<(\log 2 n) /(\log 3)$. We have thus shown that $|m-n|<(\log 2 n) /(\log 3)$. We let $T=(\log 2 n) /(\log 3)$ and denote by \mathcal{I} the interval $\mathcal{I}=(n+1+T, 2 n-2 T]$. Since $\mathcal{I} \subset(n+1,2 n] \cap(m+1,2 m]$, we have that $p \mid C_{n}$ and $p \mid C_{m}$ for all primes $p \in \mathcal{I}$. Thus, by equation (4), we have that $p \mid \sigma\left(C_{n}\right)$ as well for all primes $p \in \mathcal{I}$. Since $p \mid C_{n}$ for all primes $p \in \mathcal{I}$, we have

$$
\prod_{p \in \mathcal{I}}(p+1) \mid \sigma\left(C_{n}\right)
$$

Since the largest prime factor of the number appearing in the left hand side of the last divisibility relation above is $\leq(2 n-2 T+1) / 2 \leq n$ (because all such primes p are odd), we get that the number appearing in the left hand side of the above divisibility relation does not have any prime factor $p \in \mathcal{I}$. We now conclude that in fact

$$
\prod_{p \in \mathcal{I}} p(p+1) \mid \sigma\left(C_{n}\right) .
$$

Thus,

$$
\begin{equation*}
\sigma\left(C_{n}\right) \geq \prod_{p \in \mathcal{I}} p(p+1)>n^{2(\pi(2 n-2 T)-\pi(n+T))} . \tag{18}
\end{equation*}
$$

We now recall from [1] that

$$
\begin{equation*}
\pi(x)>\frac{x}{\log x-0.5}, \quad \text { whenever } x \geq 67 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(x)<\frac{x}{\log x-1.5}, \quad \text { whenever } x \geq e^{2 / 3} . \tag{20}
\end{equation*}
$$

Using these inequalities, we checked that

$$
\begin{equation*}
\pi(2 n-2 T)-\pi(n+T)>\frac{7 n}{10 \log n}, \quad \text { whenever } n \geq 117 \tag{21}
\end{equation*}
$$

To check (21), note that by inequalites (19) and (20) we have

$$
\pi(2 n-2 T)>\frac{2 n-2 T}{\log (2 n-2 T)-0.5}, \quad \text { whenever } n>67
$$

(note that $2 n-2 T>n$ when $n>67$, because this inequality is implied by $n>2 \log (2 n)$, or $e^{n}>4 n^{2}$, and this is certainly true for $n>67$), and

$$
\pi(n+T)<\frac{n+T}{\log (n+T)-1.5}, \quad \text { whenever } n>e^{3 / 2}
$$

Hence, in order to prove that inequality (21) holds, it suffices to check that

$$
\begin{equation*}
\frac{2 n-2 T}{\log (2 n-2 T)-0.5}-\frac{n+T}{\log (n+T)-1.5}>\frac{7 n}{10 \log n} \tag{22}
\end{equation*}
$$

holds for all $n \geq 117$ with $T=(\log 2 n) /(\log 3)$. We checked with Mathematica that inequality (22) holds for all $n>2224$, and we then checked that inequality (21) holds for all positive integers $n \in[117,2224]$, which completes the proof of inequality (21). Inequality (18) in conjunction with inequality (21) gives us that

$$
\sigma\left(C_{n}\right)>n^{\frac{7 n}{5 \log n}}, \quad \text { whenever } n \geq 117 .
$$

On the other hand, we also have

$$
\sigma\left(C_{n}\right)<C_{n}(1+2 n \log 2)<\frac{2^{2 n}}{(n+1)^{2}}(1+2 n \log 2),
$$

and the last two inequalities above imply that

$$
2^{2 n}(1+2 n \log 2)>n^{2} e^{\frac{7}{5} n}
$$

which in turn leads to

$$
2^{2 n+1}>n e^{\frac{7}{5} n} .
$$

Taking logarithms, we get

$$
2 n \log 2+\log 2>\log n+\frac{7}{5} n
$$

which in turn leads to $2 \log 2>7 / 5$, which is false. In conclusion, if (4) has any solutions at all, then they must occur only when $n<117$. Computation then shows that when $n<117$, the equation $s\left(C_{n}\right)=C_{m}$ is satisfied only for the pairs $(n, m)=(2,1)$ or $(3,1)$.

ACKNOWLEDGEMENTS

This paper started during an enjoyable visit of D. I. to the Mathematical Institute of the UNAM in Morelia, Mexico. He would like to thank this institution for its hospitality and support. During the preparation of this paper F. L. was supported in part by grants SEP-CONACyT 46755, PAPIIT IN105505 and a Guggenheim Fellowship.

REFERENCE

[1] J. B. Rosser and L. Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers." Illinois J. Math. 1 (1962): 64-94.

AMS Classification Number: 11A25

必必

