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ABSTRACT

Let A be the set of all Catalan numbers and factorials. In this note, we look at positive
integers n ∈ A whose sum of aliquot parts also belongs to A.

1. INTRODUCTION

For a positive integer n we write σ(n) for the sum of all the positive integer divisors of
n and s(n) = σ(n) − n for the sum of proper divisors of n. We recall that s(n) is sometimes
referred to as the sum of aliquot parts of n. A number n is called perfect if s(n) = n. If n
is not perfect but s(s(n)) = n, then the pair (n, s(n)) is called amicable. More generally, an
aliquot cycle of length k is a cycle of k positive integers (n1, n2, . . . , nk) such that if we set
nk+1 := n1 then ni = s(ni−1) holds for all i = 2, . . . , k + 1. It is conjectured that any positive
integer n belongs to some aliquot cycle of length k for some positive integer k.

In this paper, we fix certain infinite subsets of positive integers, say A and B and we try
to determine all n ∈ A such that s(n) ∈ B. Our sets A and B will be the subsets of all Catalan
numbers or factorials. Recall that a Catalan number is a number of the form Cn = 1

n+1

(
2n
n

)
for integer n ≥ 0. Finally, a factorial is simply a positive integer of the form n! for some integer
n ≥ 0.

We record our results as follows.

Theorem 1: The only solutions in positive integers (n, m) for the equation

s(Cn) = m! (1)

are the trivial solutions (2, 1) and (3, 1).

Theorem 2: The only solution in positive integers (m,n) for the equation

s(m!) = Cn (2)

is the trivial solution (2, 1).

Theorem 3: The only solutions in positive integers (n, m) for the equation

s(n!) = m! (3)
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are the trivial solutions (2, 1) and (3, 3).

Theorem 4: The only solutions in positive integers (n, m) for the equation

s(Cn) = Cm (4)

are the trivial solutions (2, 1) and (3, 1).
Throughout this paper, for a positive integer k we write v2(k) = α if 2α‖k. We refer to

v2(k) as the 2-valuation of k. We also let `2(k) denote the sum of the binary digits of k. We
shall use the obvious inequality

`2(k) ≤ log k

log 2
+ 1

as well as the known fact that
v2(k!) = k − `2(k).

We finally let π(k) denote the number of primes p ≤ k.

2. PROOF OF THEOREM 1

First we compare the 2-valuation of both sides of (1). Since

v2

(
2n

n

)
= v2((2n)!)− 2v2(n!)

= 2n− `2(2n)− 2n + 2`2(n)

= `2(n) ≤ log n

log 2
+ 1,

we have

v2(Cn) = v2

(
2n

n

)
− v2(n + 1) ≤ v2

(
2n

n

)
≤ log n

log 2
+ 1. (5)

Since Cn is divisible exactly once by all primes p such that n + 1 < p ≤ 2n, we have

v2(σ(Cn)) ≥
∑

n+1<p≤2n

v2(p + 1) ≥ π(2n)− π(n + 1).

Since
π(2n)− π(n + 1) ≥ n

2 log n
(6)
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for all n ≥ 7 (see Rosser and Schoenfeld [1]), we have

v2(σ(Cn)) ≥ n

2 log n
, whenever n ≥ 7. (7)

For n ≥ 54 we also have

n

2 log n
>

log n

log 2
+ 1.

Thus, by (5) and (7), we have v2(σ(Cn)) > v2(Cn), and so again if n ≥ 54 we get

v2 (σ(Cn)− Cn) = v2(Cn) ≤ log n

log 2
+ 1. (8)

We also have

v2(m!) = m− `2(m) ≥ m− log m

log 2
− 1. (9)

Next, we obtain a lower bound for the left-hand side of (1). Since Cn is divisible exactly once
by all primes p such that n + 1 < p ≤ 2n, we have

σ(Cn) ≥ Cn

∏
n+1<p≤2n

(
1 +

1
p

)
≥ Cn

(
1 +

1
2n

)π(2n)−π(n+1)

,

and so, by estimate (6), we have

σ(Cn) ≥ Cn

(
1 +

1
2n

) n
2 log n

, whenever n ≥ 7.

Taking logarithms in the last inequality above we get

log(σ(Cn)) ≥ log Cn +
n

2 log n
log

(
1 +

1
2n

)

≥ log Cn +
n

2 log n

(
1
2n

− 1
8n2

)

= log Cn +
1

2 log n

(
1
2
− 1

8n

)
;
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equivalently,

σ(Cn) ≥ Cn · exp
(

1
4 log n

− 1
16n log n

)
. (10)

Recalling the known inequality

Cn =
1

n + 1

(
2n

n

)
≥ 22n

(n + 1)2
,

we get

σ(Cn)− Cn ≥ Cn ·
(

exp
(

1
4 log n

− 1
16n log n

)
− 1

)

≥ 22n

(n + 1)2
·
(

exp
(

1
4 log n

− 1
16n log n

)
− 1

)

≥ n2 log n log log n.

The last inequality claimed above holds for all n ≥ 28. We have thus shown that if n ≥ 54
then

σ(Cn)− Cn ≥ n2 log n log log n. (11)

In particular, m! > n2 log n log log n, which for n ≥ 54 implies that m ≥ 10. By (1), (8) and (9),
we have, for n ≥ 54,

log n

log 2
+ 1 ≥ m− log m

log 2
− 1,

which implies n ≥ 2m−2/m. Since 2m−2/m > e
√

m for m ≥ 10, we have

n ≥ e
√

m, whenever m ≥ 10 and n ≥ 54. (12)

Finally, by (11) and (12), we get that if n ≥ 54, then

σ(Cn)− Cn ≥ n2 log n log log n

≥ (e
√

m)
√

m log m

= mm > m!,

which contradicts (1). Thus, any solutions to (1) must be in the range n < 54. Computation
then reveals that the only such solutions are (n, m) = (2, 1) and (3, 1).
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3. PROOF OF THEOREM 2

Recalling (9), we have

v2(m!) ≥ m− log m

log 2
− 1.

Since m! is divided exactly once by all primes p such that m/2 < p ≤ m, we have

v2(σ(m!)) ≥
∑

m
2 <p≤m

v2(p + 1) ≥ π(m)− π(m/2)

≥ m

3 log m

(again, see Rosser and Schoenfeld [1]) for m ≥ 18. Since

m− log m

log 2
− 1 >

m

3 log m

for m ≥ 4, we have that for all m ≥ 18,

v2(σ(m!)−m!) ≥ m

3 log m
. (13)

On the other hand, recalling (5), we also have

v2(Cn) ≤ log n

log 2
+ 1.

Therefore (13) and (5) together imply that for m ≥ 18 we have

log n

log 2
+ 1 ≥ m

3 log m
.

Note that for all m ≥ 225 we also have that m > 3 log m(3 + 2 log m), which in turn implies
that

m

3 log m
> 3 + 2 log m.
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Thus, for m ≥ 225, we have

log n

log 2
+ 1 > 3 + 2 log m.

The above inequality implies that log n > 2 + 2 log m > 4m log m, which in turn leads to
n log 2 > 2m log m, or,

2n > m2m.

Since m ≥ 225, the last inequality above certainly implies that n ≥ 7. But for n ≥ 7 we also
have

Cn >
22n

(n + 1)(2n + 1)
> 2n,

and so

s(m!) ≤
m!−1∑
k=1

k =
m!(m!− 1)

2
<

mm(mm − 1)
2

< m2m.

Thus, we get the contradiction Cn > 2n > m2m > σ(m!)−m! if m ≥ 225. Computation now
shows that the only solution to (2) in the remaining range m ≤ 224 is (n, m) = (2, 1).

4. PROOF OF THEOREM 3

We shall assume (3) holds for n ≥ 4; it is easy to see that the only solutions when n ≤ 3
are those stated in Theorem 3. Thus 12 | n!, and so n! is abundant; this implies s(n!) > n!,
and so by (3)

m! > n!. (14)

Next, we note that

σ(n!) = n!
∑
d|n!

1
d

< n!
n!∑

k=1

1
k

< n!(1 + log n!) < n!(1 + n log n).

Thus we get s(n!) < n! · n log n < n! · n2 < (n + 2)!. Thus by (3) and (14),

n! < m! < (n + 2)!,

which implies n < m < n + 2. Hence, we have m = n + 1. Thus, (3) becomes s(n!) = (n + 1)!,
or, equivalently, σ(n!) = n!(n + 2). We may state this as

σ(n!)
n!

= n + 2. (15)
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The function σ(n)/n is multiplicative and for prime p and a ≥ 1 we have

σ(pa)
pa

= 1 +
1
p

+
1
p2

+ · · ·+ 1
pa

<
∞∑

k=0

1
pk

=
p

p− 1
.

Therefore

σ(n!)
n!

<
∏
p≤n

p

p− 1
< eγ

n∑
k=1

1
k

,

the right hand inequality following for all n ≥ 1 by equation (3.31) in Rosser and Schoen-
feld [1]—note here that γ denotes Euler’s gamma constant. As

n∑
k=1

1
k

< 1 + log n,

we get by (15),
n + 2 < eγ(1 + log n),

but this statement is clearly false when n ≥ 4, which we assumed. Therefore the only solutions
to (3) are (m,n) = (2, 1) and (3, 3).

5. PROOF OF THEOREM 4

In (4), we shall assume that n = m ± t for some nonnegative integer t. Our immediate
goal is to obtain a bound on t. It is easy to see that Cm+1/Cm ≥ 3 for all m. In fact,

Cm+1

Cm
=

4m + 2
m + 2

∈ [3, 4), whenever m ≥ 4. (16)

We now consider two cases separately, namely when m ≥ n and when m < n, respectively.
If m ≥ n, then by (16), we have Cm = Cn+t ≥ 3tCn. Furthermore, since

σ(Cn) < Cn

22n∑
k=1

1
k

< Cn(1 + 2n log 2),

we have
3tCn ≤ Cm = s(Cn) < Cn(2n log 2) < 2nCn,
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which implies

t <
log 2n

log 3
. (17)

Assume now that m < n. Recall that, by estimate (10), we have that

Cm = s(Cn) ≥ Cn

(
exp

(
1

4 log n
− 1

16n log n

)
− 1

)
>

3Cn

16 log n
,

whenever n ≥ 7, where in the rightmost inequality above we used the fact that ex − 1 > x
holds for all positive numbers x. Thus, by containment (4), we get

Cn

4t
≥ Cm = s(Cn) >

3Cn

16 log n
,

and so 3t < 4t < (16 log n)/3 < 2n, where the last inequality holds for all n ≥ 2. This
gives us again that t < (log 2n)/(log 3). We have thus shown that |m − n| < (log 2n)/(log 3).
We let T = (log 2n)/(log 3) and denote by I the interval I = (n + 1 + T, 2n− 2T ] . Since
I ⊂ (n + 1, 2n] ∩ (m + 1, 2m], we have that p | Cn and p | Cm for all primes p ∈ I. Thus, by
equation (4), we have that p | σ(Cn) as well for all primes p ∈ I. Since p | Cn for all primes
p ∈ I, we have ∏

p∈I
(p + 1) | σ(Cn).

Since the largest prime factor of the number appearing in the left hand side of the last divisi-
bility relation above is ≤ (2n− 2T +1)/2 ≤ n (because all such primes p are odd), we get that
the number appearing in the left hand side of the above divisibility relation does not have any
prime factor p ∈ I. We now conclude that in fact

∏
p∈I

p(p + 1) | σ(Cn).

Thus,

σ(Cn) ≥
∏
p∈I

p(p + 1) > n2(π(2n−2T )−π(n+T )). (18)
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We now recall from [1] that

π(x) >
x

log x− 0.5
, whenever x ≥ 67, (19)

and
π(x) <

x

log x− 1.5
, whenever x ≥ e2/3. (20)

Using these inequalities, we checked that

π(2n− 2T )− π(n + T ) >
7n

10 log n
, whenever n ≥ 117. (21)

To check (21), note that by inequalites (19) and (20) we have

π(2n− 2T ) >
2n− 2T

log(2n− 2T )− 0.5
, whenever n > 67

(note that 2n − 2T > n when n > 67, because this inequality is implied by n > 2 log(2n), or
en > 4n2, and this is certainly true for n > 67), and

π(n + T ) <
n + T

log(n + T )− 1.5
, whenever n > e3/2.

Hence, in order to prove that inequality (21) holds, it suffices to check that

2n− 2T

log(2n− 2T )− 0.5
− n + T

log(n + T )− 1.5
>

7n

10 log n
(22)

holds for all n ≥ 117 with T = (log 2n)/(log 3). We checked with Mathematica that inequality
(22) holds for all n > 2224, and we then checked that inequality (21) holds for all positive
integers n ∈ [117, 2224], which completes the proof of inequality (21). Inequality (18) in
conjunction with inequality (21) gives us that

σ(Cn) > n
7n

5 log n , whenever n ≥ 117.
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On the other hand, we also have

σ(Cn) < Cn(1 + 2n log 2) <
22n

(n + 1)2
(1 + 2n log 2),

and the last two inequalities above imply that

22n(1 + 2n log 2) > n2e
7
5 n,

which in turn leads to
22n+1 > ne

7
5 n.

Taking logarithms, we get

2n log 2 + log 2 > log n +
7
5
n,

which in turn leads to 2 log 2 > 7/5, which is false. In conclusion, if (4) has any solutions at
all, then they must occur only when n < 117. Computation then shows that when n < 117,
the equation s(Cn) = Cm is satisfied only for the pairs (n, m) = (2, 1) or (3, 1).
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