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ABSTRACT

Let

Qr(n) = Gn+1Gn+2 · · ·Gn+r (0.1)

Q̂r(n) = Jn+1Jn+2 · · · Jn+r (0.2)

where, for various non-zero constants a, b, and c, one defines

Gm = aGm−1 + bGm−2 (0.3)

Jm = aJm−1 + bJm−2 + cJm−3. (0.4)

Through repeated iterations, one can show that

Qr(n) =
r∑

j=1

Rr
j (a, b)Gr+1−j

n+1 Gj−1
n (0.5)

Q̂r(n) =
r−1∑
p=1

r−p∑
q=1

Rr
p,q(a, b, c)Jp

n+2J
q
n+1J

r−p−q
n , (0.6)

where the Rr
j (a, b) and Rr

p,q(a, b, c) are polynomials that obey a recurrence relation. This
recurrence relation is a sum whose terms are binomial coefficients times monomials albk for
(0.5) or binomial coefficients times monomials albkcs for (0.6).

1. INTRODUCTION

The Fibonacci numbers are one of the most studied combinatorial sequences. Various
papers have been written about their properties. However, when perusing the literature, we
found that no one has investigated the product of r consecutive Fibonacci numbers, namely
the quantity P̃r(n) = Fn+1Fn+2 · · ·Fn+r, where Fn is the nth Fibonacci number defined by
Fn = Fn−1 + Fn−2, F1 = 1, F0 = 0. By repeatedly iterating P̃r(n), we discovered that P̃r(n)
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can be written as a linear combination of products of the form Fu
n+1F

v
n , where u + v = r.

The coefficients of this linear combination obey a recurrence relation that only depends on the
Fibonacci recurrence Fn = Fn−1 + Fn−2, and not on the initial conditions F0 and F1. This
coefficient recurrence is recorded in Theorem 1. For example, the Lucas numbers, defined by
Ln = Ln−1 + Ln−2, L1 = 3, L0 = 1, are a sequence which obeys the Fibonacci recurrence, and
hence, the coefficient recurrence of Theorem 1. By modifying the recurrence that defines Fn,
we are able to form various generalizations of Theorem 1. These generalizations are given in
Theorem 2, Theorem 3, and Theorem 4.

2. FIBONACCI RECURRENCE Hm = Hm−1 + Hm−2

Consider the product Pr(n) = Hn+1Hn+2 · · ·Hn+r of r consecutive numbers which obey
the Fibonacci-type recurrence Hm = Hm−1 + Hm−2. By applying this recurrence repeatedly,
we find

P1(n) = Hn+1,

P2(n) = H2
n+1 + Hn+1Hn,

P3(n) = 2H3
n+1 + 3H2

n+1Hn + Hn+1H
2
n,

P4(n) = 6H4
n+1 + 13H3

n+1Hn + 9H2
n+1H

2
n + 2Hn+1H

3
n.

These calculations suggest the following formula for Pr(n).

Theorem 1: Let Pr(n) = Hn+1Hn+2 · · ·Hn+r. Then,

Pr(n) =
r∑

j=1

Rr
jH

r+1−j
n+1 Hj−1

n , (2.1)

where,
Rr+1

j = Fr+1R
r
j + FrR

r
j−1, R1

1 = 1, (2.2)

and Rr
j = 0 for j ≤ 0 or j > r. Note that Fr is the rth Fibonacci number.

Proof of Theorem 1: Mathematical induction on r. Clearly (2.1) is true when r = 1.
We now assume (2.1) is true for arbitrary r and compute Pr+1(n). By definition

Pr+1(n) = Hn+r+1Pr(n). (2.3)

Using the induction hypothesis (2.1), along with the following well-known fact [1, p. 88],

Hn+r = FrHn+1 + Fr−1Hn (2.4)
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we can simplify the right side of (2.3) to obtain

Pr+1(n) =
r∑

j=1

Rr
j (Fr+1H

r+2−j
n+1 Hj−1

n + FrH
r+1−j
n+1 Hj

n) (2.5)

=
r∑

j=1

Rr
jFr+1H

r+2−j
n+1 Hj−1

n +
r+1∑
j=2

FrH
r+2−j
n+1 Hj−1

n Rr
j−1 (2.6)

=
r+1∑
j=1

(Fr+1R
r
j + FrR

r
j−1)H

r+2−j
n+1 Hj−1

n . (2.7)

Note that the parenthetical quantity of (2.7) is exactly (2.2). This proves our claim.

In other words, Theorem 1 states that Pr(n) may be expanded as a linear combination of
products of the form Hu

n+1H
v
n, where u + v = r. Table 7.1 shows the first eight rows of the Rr

j

triangle.

An interesting feature of the array is that the left diagonal and right column are the
products of consecutive Fibonacci numbers, i.e.

Rr
1 =

r∏
i=1

Fi = Rr+1
r+1.

Another interesting property is that the sums of the rows are also Fibonacci products, i.e.

r∑
j=1

Rr
j =

r+1∏
i=1

Fi. (2.8)

We prove (2.8) by mathematical induction on r and noting that (2.2) implies

r+1∑
j=1

Rr+1
j =

r+1∑
j=1

FrR
r
j−1 +

r+1∑
j=1

Fr+1R
r
j .

A similar argument shows

r∑
j=1

(−1)jRr
j = 0, for r ≥ 1. (2.9)
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Equations (2.8) and (2.9) afford us a numerical check when calculating the coefficients in each
row of Table 7.1.

These properties suggest that we consider the general polynomial

Pr(x, y) =
r∑

j=1

Rr
jx

r+1−jyj−1. (2.10)

By mathematical induction on r, it is easy to show that, in fact,

Pr(x, y) = x(x + y)(2x + y)(3x + 2y)(5x + 3y) · · · (Frx + Fr−1y). (2.11)

Equation (2.11) implies that we may think of Pr(x, y) as a kind of Fibonacci generalization of
the ordinary binomial theorem.

It follows from (2.10) and (2.11) that

r∑
j=1

Rr
jx

j−1 = (x + 1)(x + 2)(2x + 3)(3x + 5) · · · (Fr−1x + Fr). (2.12)

The zeroes of the polynomial in (2.12) are, of course, negative ratios of consecutive Fibonacci
numbers.

3. GENERALIZED FIBONACCI RECURRENCE: Gm = aGm−1 + bGm−2

We now consider the product Qr(n) = Gn+1Gn+2 · · ·Gn+r of r consecutive numbers
which obey the Fibonacci-type recurrence Gm = aGm−1 + bGm−2. Note that a and b are
fixed, non-zero constants. By applying this recurrence repeatedly, we find

Q1(n) = Gn+1

Q2(n) = aG2
n+1 + bGn+1Gn

Q3(n) = (a3 + ab)G3
n+1 + (2a2b + b2)G2

n+1Gn + ab2Gn+1G
2
n

Q4(n) = (a6 + 3a4b + 2a2b2)G4
n+1 + (3a5b + 7a3b2 + 3ab3)G3

n+1Gn

+ (3a4b2 + 5a2b3 + b4)G2
n+1G

2
n + (a3b3 + ab4)Gn+1G

3
n.

These calculations suggest the following generalization of Theorem 1.

Theorem 2: Let Qr(n) = Gn+1Gn+2 · · ·Gn+r. Then,

Qr(n) =
r∑

j=1

Rr
j (a, b)Gr+1−j

n+1 Gj−1
n , (3.1)
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where,

Rr+1
j (a, b) = Rr

j (a, b)
[ r
2 ]∑

k=0

(
r − k

k

)
ar−2kbk + Rr

j−1(a, b)
[ r−1

2 ]∑
k=0

(
r − 1− k

k

)
ar−1−2kbk+1, (3.2)

and R1
1(a, b) = 1, Rr

j (a, b) = 0 for j ≤ 0 or j > r.

Before we prove Theorem 2, we should note Remark 1. This remark, which parallels (2.4),
is proven by an induction over r which utilizes Pascal’s binomial identity. In particular,

Remark 1: Let Gn+r be as previously defined. Then,

Gn+r = Gn+1

[ r−1
2 ]∑

k=0

(
r − k − 1

k

)
ar−2k−1bk + Gn

[ r−2
2 ]∑

k=0

(
r − k − 2

k

)
ar−2k−2bk+1. (3.3)

Proof of Theorem 2: Mathematical induction on r. First note that (3.1) is true when
r = 1. Now assume (3.1) is true for arbitrary r and compute Qr+1(n). By definition, and the
induction hypothesis (3.1),

Qr+1(n) = Gn+r+1Qr(n) = Gn+r+1

r∑
j=1

Rr
j (a, b)Gr+1−j

n+1 Gj−1
n . (3.4)

Substitute (3.3) into the right hand sum of (3.4) to obtain

Qr+1(n) =
r∑

j=1

[ r
2 ]∑

k=0

Rr
j (a, b)ar−2kbk

(
r − k

k

)
Gr+2−j

n+1 Gj−1
n

+
r∑

j=1

[ r−1
2 ]∑

k=0

Rr
j (a, b)ar−2k−1bk+1

(
r − k − 1

k

)
Gr+1−j

n+1 Gj
n

=
r∑

j=1

[ r
2 ]∑

k=0

Rr
j (a, b)ar−2kbk

(
r − k

k

)
Gr+2−j

n+1 Gj−1
n

+
r+1∑
j=2

[ r−1
2 ]∑

k=0

Rr
j−1(a, b)ar−2k−1bk+1

(
r − k − 1

k

)
Gr+2−j

n+1 Gj−1
n

=
r+1∑
j=1

AGr+2−j
n+1 Gj−1

n ,
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where,

A = Rr
j (a, b)

[ r
2 ]∑

k=0

(
r − k

k

)
ar−2kbk + Rr

j−1(a, b)
[ r−1

2 ]∑
k=0

(
r − 1− k

k

)
ar−1−2kbk+1. (3.5)

Since (3.5) is exactly (3.2), we have proven the theorem.

4. TRIPLE RECURRENCE: Km = Km−1 + Km−2 + Km−3

Next, we will consider product P̂r(n) = Kn+1Kn+2 · · ·Kn+r of r consecutive numbers
which obey the basic linear three term recurrence, Km = Km−1 +Km−2 +Km−3. By iterating
this recurrence repeatedly, we find that

P̂1(n) = Kn+1

P̂2(n) = Kn+2Kn+1

P̂3(n) = K2
n+2Kn+1 + Kn+2K

2
n+1 + Kn+2Kn+1Kn

P̂4(n) = 2K3
n+2Kn+1 + 4K2

n+2K
2
n+1 + 3K2

n+2Kn+1Kn + 2Kn+2K
3
n+1

+ 3Kn+2K
2
n+1Kn + Kn+2Kn+1K

2
n.

These calculations suggest a formula for P̂r(n) similiar to that for Pr(n). We record this formula
in Theorem 3. The proof of Theorem 3 is omitted since the proof follows the procedure we used
in proving Theorem 1. The only difference in the proof of Theorem 3 is that (2.4) becomes

Kn+r = F̂r−1Kn+2 + F̃r−2Kn+1 + F̂r−2Kn, (4.1)

where,
1. F̂r = F̂r−1 + F̂r−2 + F̂r−3, F̂0 = 0, F̂1 = 1, F̂2 = 1.

2. F̃r = F̃r−1 + F̃r−2 + F̃r−3, F̃0 = 0, F̃1 = 1, F̃2 = 2.

Theorem 3: Let P̂r(n) = Kn+1Kn+2 · · ·Kn+r. Then,

P̂r(n) =
r−1∑
k=1

r−k∑
l=1

Rr
k,lK

k
n+2K

l
n+1K

r−k−l
n , r ≥ 2, (4.2)

where,
Rr+1

k,l = F̂rR
r
k−1,l + F̃r−1R

r
k,l−1 + F̂r−1R

r
k,l. (4.3)

For a fixed r, Rr
k,l is identically zero when k and l are outside the range of summation provided

by (4.2).
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5. GENERALIZED TRIPLE RECURRENCE: Jm = aJm−1 + bJm−2 + cJm−3

Consider the product Q̂r(n) = Jn+1Jn+2 · · · Jn+r of r consecutive numbers which obey
the generalized form of the three term linear recurrence, Jm = aJm−1 + bJm−2 + bJm−3. In
this case, a, b, and c are fixed non-zero constants. Through repeated iterations, we find

Q̂1(n) = Jn+1

Q̂2(n) = Jn+2Jn+1

Q̂3(n) = aJ2
n+2Jn+1 + bJn+2J

2
n+1 + cJn+2Jn+1Jn

Q̂4(n) = (a3 + ba)J3
n+2Jn+1 + (2a2b + b2 + ca)J2

n+2J
2
n+1 + (2a2c + bc)J2

n+2Jn+1Jn

+ (ab2 + cb)Jn+2J
3
n+1 + (2abc + c2)Jn+2J

2
n+1Jn + ac2Jn+2Jn+1J

2
n.

These calculations suggest the following generalization of Theorem 3, which we record as
Theorem 4. We omit the proof of Theorem 4 since it parallels that of Theorem 3. The only
difference is that (3.3) becomes

Jn+r = C2
r Jn+2 + C1

r Jn+1 + C0
r Jn, (5.1)

where,

C2
r =

[ r−2
3 ]∑

j=0

[ r−3j−2
2 ]∑

k=0

(
j + k

j

)(
r − 2− 2j − k

j + k

)
ar−2−3j−2kbkcj .

C1
r =

[ r−1
3 ]∑

j=0

[ r−3j−1
2 ]∑

k=0

(
j + k

j

)(
r − 2− 2j − k

j + k − 1

)
ar−1−3j−2kbkcj .

C0
r = cC2

r−1.

Theorem 4: Let Q̂r(n) = Jn+1Jn+2 · · · Jn+r. Then,

Q̂r(n) =
r−1∑
p=1

r−p∑
q=1

Rr
p,q(a, b, c)Jp

n+2J
q
n+1J

r−p−q
n , r ≥ 2, (5.2)
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where,

Rr+1
p,q (a, b, c) =

[ r−1
3 ]∑

j=0

[ r−3j−1
2 ]∑

k=0

Rr
p−1,q(a, b, c)

(
j + k

j

)(
r − 1− 2j − k

j + k

)
ar−1−3j−2kbkcj

+
[ r
3 ]∑

j=0

[ r−3j
2 ]∑

k=0

Rr
p,q−1(a, b, c)

(
j + k

j

)(
r − 1− 2j − k

j + k − 1

)
ar−3j−2kbkcj

+
[ r−2

3 ]∑
j=0

[ r−3j−2
2 ]∑

k=0

Rr
p,q(a, b, c)

(
j + k

j

)(
r − 2− 2j − k

j + k

)
ar−2−3j−2kbkcj+1

For a fixed r, Rr
p,q(a, b, c) is identically zero when p and q are outside the range of summation

provided by (5.2).

6. OPEN QUESTIONS

In this paper, we have analyzed the quantity P̃r(n) = FnFn+1 · · ·Fn+r, where Fn is
defined by either a two term or three term Fibonacci-type recurrence. Such analysis led to
the formation of polynomial coefficients Rr

j (a, b) and Rr
p,q(a, b, c) which obey the relationships

defined in Theorem 2 and Theorem 4, respectively. Future research should investigate the
various properties of these polynomials. Furthermore, an interesting research problem involves
extending the iteration analysis used throughout this paper to the product of r numbers, each
of which is defined by a k term Fibonacci-type recurrence, for k ≥ 4.

7. TABLES

1
1 1

2 3 1
6 13 9 2

30 83 84 37 6
240 814 1087 716 233 30

3120 12502 20643 18004 8757 2254 240
65520 303102 596029 646443 417949 161175 34342 3120

Table 7.1: The first eight rows of the Rr
j triangle.

The row index corresponds to r, where 1 ≤ r ≤ 8,
while the column index corresponds to j, 1 ≤ j ≤ 8.

For example, R4
2 = 13 and R5

3 = 84.
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R1
1(a, b) = 1

R2
1(a, b) = a R2

2(a, b) = b

R3
1(a, b) = a3 + ab R3

2(a, b) = 2a2b + b2 R3
3(a, b) = ab2

R4
1(a, b) = a6 + 3a4b + 2a2b2 R4

2(a, b) = 3a5b + 7a3b2 + 3ab3

R4
3(a, b) = 3a4b2 + 5a2b3 + b4

R4
4(a, b) = a3b3 + ab4

R5
1(a, b) = a10 + 6a8b + 12a6b2 + 9a4b3 + 2a2b4

R5
2(a, b) = 4a9b + 21a7b2 + 35a5b3 + 20a3b4 + 3ab5

R5
3(a, b) = 6a8b2 + 27a6b3 + 36a4b4 + 14a2b5 + b6

R5
4(a, b) = 4a7b3 + 15a5b4 + 15a3b5 + 3ab6 R5

5(a, b) = a6b4 + 3a4b5 + 2a2b6

R6
1(a, b) = a15 + 10a13b + 39a11b2 + 75a9b3 + 74a7b4 + 35a5b5 + 6a3b6

R6
2(a, b) = 5a14b + 46a12b2 + 162a10b3 + 274a8b4 + 229a6b5 + 87a4b6 + 11a2b7

R6
3(a, b) = 10a13b2 + 84a11b3 + 264a9b4 + 385a7b5 + 263a5b6 + 75a3b7 + 6ab8

R6
4(a, b) = 10a12b3 + 76a10b4 + 210a8b5 + 257a6b6 + 136a4b7 + 26a2b8 + b9

R6
5(a, b) = 5a11b4 + 34a9b5 + 81a7b6 + 80a5b7 + 30a3b8 + 3ab9

R6
6(a, b) = a10b5 + 6a8b6 + 12a6b7 + 9a4b8 + 2a2b9

Table 7.2: Rr
j (a, b), where 1 ≤ r ≤ 6.

Note that if a = 1 = b, we recapture the first six rows of Table 7.1.

R1
0,1 = 1

R2
1,1 = 1

R3
2,1 = 1 R3

1,2 = 1 R3
1,1 = 1

R4
3,1 = 2 R4

2,2 = 4 R4
2,1 = 3 R4

1,3 = 2 R4
1,2 = 3 R4

1,1 = 1

R5
4,1 = 8 R5

3,2 = 22 R5
3,1 = 16 R5

2,3 = 20 R5
2,2 = 29 R5

2,1 = 10

R5
1,4 = 6 R5

1,3 = 13 R5
1,2 = 9 R5

1,1 = 2

R6
5,1 = 56 R6

4,2 = 202 R6
4,1 = 144 R6

3,3 = 272 R6
3,2 = 387 R6

3,1 = 134

R6
2,4 = 162 R6

2,3 = 345 R6
2,2 = 239 R6

2,1 = 54

R6
1,5 = 36 R6

1,4 = 102 R6
1,3 = 106 R6

1,2 = 48 R6
1,1 = 8

Table 7.3: Non-zero values for Rj
k,l when 1 ≤ j ≤ 6.
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R1
0,1(a, b, c) = 1

R2
1,1(a, b, c) = 1

R3
2,1(a, b, c) = a R3

1,2(a, b, c) = b R3
1,1(a, b, c) = c

R4
3,1(a, b, c) = a3 + ab R4

2,2(a, b, c) = 2a2b + b2 + ac R4
2,1(a, b, c) = 2a2c + bc

R4
1,3(a, b, c) = ab2 + bc R4

1,2(a, b, c) = 2abc + c2 R4
1,1(a, b, c) = ac2

R5
4,1(a, b, c) = a3c + abc + 2a2b2 + a6 + 3a4b

R5
3,2(a, b, c) = ac2 + b2c + 5a2bc + 7a3b2 + 3a5b + 2a4c + 3ab3

R5
3,1(a, b, c) = 2a2c2 + 3ab2c + bc2 + 7a3bc + 3a5c

R5
2,3(a, b, c) = 4a3bc + bc2 + a2c2 + 5a2b3 + b4 + 5ab2c + 3a4b2

R5
2,2(a, b, c) = 4a3c2 + c3 + 6a4bc + 6abc2 + 2b3c + 10a2b2

R5
2,1(a, b, c) = 5a2bc2 + b2c2 + ac3 + 3a4c2

R5
1,4(a, b, c) = ab4 + a3b3 + abc2 + 2a2b2c + b3c

R5
1,3(a, b, c) = 3ab3c + 4a2bc2 + 2b2c2 + ac3 + 3a3b2c

R5
1,2(a, b, c) = 2a2c3 + 3a3bc2 + bc3 + 3ab2c2 R5

1,1(a, b, c) = abc3 + a3c3

Table 7.4: Rj
k,l(a, b, c), where 1 ≤ j ≤ j.

Note that if a = 1 = b = c, we recapture Table 7.3.
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