THE EQUATION $m^{2}-4 k=5 n^{2}$ AND UNIQUE REPRESENTATIONS OF POSITIVE INTEGERS

Clark Kimberling

Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722
e-mail: ck6@evansville.edu
(Submitted June 2006)

Abstract

If n is a positive integer, there exists one and only one pair (j, k) of positive integers such that $(j+k+1)^{2}-4 k=5 n^{2}$. The resulting unique representation of n can be used to generate both the Wythoff difference array and the Fraenkel array. It also provides the solution of the complementary equation $b(n)=a(j n)+k n$ in all cases in which a and b are a pair of Beatty sequences and $a(n)$ is of the form $[r n]$ for r an irrational number in the field $Q(\sqrt{5})$.

1. INTRODUCTION

Given a positive integer n, the Diophantine equation $m^{2}-4 k=5 n^{2}$ has many solutions (m, k). However, putting $m=j+k+1$ yields an equation that has one and only one solution (j, k) for which both j and k are positive integers. After proving this in Section 2, we shall show, in Sections 3 and 4, how each of two recently introduced arrays can be generated by taking the pairs (j, k) in a certain order. The arrays, called the Wythoff difference array (WDA) and the Fraenkel array, are defined just below. In Section 5, Gessel's Theorem regarding all the solutions of the equations $m^{2} \pm 4=5 n^{2}$ is generalized in connection with the WDA and the Fraenkel array. In Section 6, Theorem 1 is applied to the complementary equation $b(n)=a(j n)+k n$.

Throughout, the symbols j, k are integers, and n, g, h are positive integers. The golden number $(1+\sqrt{5}) / 2$ is denoted by τ. The Fibonacci numbers F_{g} and Lucas numbers L_{g} are defined as usual by

$$
\begin{array}{llll}
F_{0}=0, & F_{1}=1, & F_{g}=F_{g-1}+F_{g-2} & \text { for } g \geq 2, \\
L_{0}=2, & L_{1}=1, & L_{g}=L_{g-1}+L_{g-2} & \text { for } g \geq 2 .
\end{array}
$$

The WDA, $\mathcal{D}=\{d(g, h)\}$, is given [3] by

$$
d(g, h)=\lfloor g \tau\rfloor F_{2 h-1}+(g-1) F_{2 h-2}
$$

and satisfies the following recurrence for rows:

$$
d(g, h)=3 d(g, h-1)-d(g, h-2) \text { for } h \geq 3 .
$$

The lower Wythoff sequence (indexed as A000201 in [5]) and upper Wythoff sequence (A001950) are given by $\{\lfloor n \tau\rfloor\}$ and $\left\{\left\lfloor n \tau^{2}\right\rfloor\right\}$, respectively. As the dispersion [6] of the upper Wythoff sequence, the WDA contains every n exactly once. The northwest corner of \mathcal{D} is shown here:

THE EQUATION $m^{2}-4 k=5 n^{2}$ AND UNIQUE REPRESENTATIONS OF POSITIVE INTEGERS

1	2	5	13	34	89	233	\ldots
3	7	18	47	123	322	843	
4	10	26	68	178	466	1220	
6	15	39	102	267	299	1830	
8	20	52	136	356	932	2440	
9	23	60	157	411	1076	2817	
11	28	73	191	500	1309	3427	
12	31	81	212	555	1453	3804	
14	36	94	246	644	1686	4414	
\vdots							

Table 1. The Wythoff difference array
The Fraenkel array, $\mathcal{F}=\{f(g, h)\}$, is introduced in [1] in connection with a combinatorial game and a numeration system. The number in row g and column h is

$$
f(g, h)=\lfloor(g-1) \tau+1\rfloor F_{2 h-1}+g F_{2 h-2} .
$$

This array satisfies the same row recurrence that \mathcal{D} does:

$$
f(g, h)=3 f(g, h-1)-f(g, h-2) \text { for } h \geq 3 .
$$

(In [1], the array has an initial row consisting entirely of zeros.) The array \mathcal{F} is the dispersion of the sequence $\left\{\left\lfloor n \tau^{2}\right\rfloor+1\right\}$, alias $\{\lfloor n \tau\rfloor+n+1\}$, formed by adding 1 to the terms of the upper Wythoff sequence.

1	3	8	21	55	144	377	\ldots
2	6	16	42	110	288	754	
4	11	29	76	199	521	1364	
5	14	37	97	254	665	1741	
7	19	50	131	343	898	2351	
9	24	63	165	432	1131	2961	
10	27	71	186	487	1275	3338	
12	32	84	220	576	1508	3948	
13	35	92	241	632	1652	4225	

Table 2. The Fraenkel array

2. MAIN THEOREM

Theorem 1: For every $n \geq 1$, there exists exactly one pair $j \geq 1, k \geq 1$ such that

$$
\begin{equation*}
n=\sqrt{\frac{(j+k+1)^{2}-4 k}{5}} . \tag{1}
\end{equation*}
$$

Explicitly,

$$
\begin{align*}
& j=n^{2}+n\lfloor n \tau\rfloor-\lfloor n \tau\rfloor^{2}, \tag{2}\\
& k=\lfloor n \tau\rfloor^{2}+(2-n)\lfloor n \tau\rfloor-n^{2}-n+1 \tag{3}
\end{align*}
$$

In order to prove Theorem 1, we first introduce notation and lemmas. For $n \geq 1$, let

$$
\begin{align*}
k(n) & =\lfloor n \tau\rfloor^{2}+(2-n)\lfloor n \tau\rfloor-n^{2}-n+1 \tag{4}\\
m(n) & =2\lfloor n \tau\rfloor-n+2 \tag{5}\\
i(n) & = \begin{cases}(n-1) / 2-\lfloor n \tau\rfloor & \text { if } n \text { is odd } \\
n / 2-\lfloor n \tau\rfloor & \text { if } n \text { is even. }\end{cases}
\end{align*}
$$

In the lemmas, n stays fixed, and we abbreviate

$$
\lfloor n \tau\rfloor \text { as } x, \quad m(n) \text { as } m, \quad k(n) \text { as } k_{1} .
$$

Define

$$
\begin{align*}
m_{i} & =m+2 i-2 \text { for } i \geq 1 \tag{6}\\
k_{i} & =k_{1}+(i-1) m+(i-1)^{2} \tag{7}
\end{align*}
$$

Lemma 1: $4 k_{1}+5 n^{2}$ is a square:

$$
4 k_{1}+5 n^{2}=m^{2}
$$

Proof:

$$
\begin{aligned}
4 k_{1}+5 n^{2} & =4\left[x^{2}+(2-n) x-n^{2}-n+1\right]+5 n^{2} \\
& =4 x^{2}+n^{2}+4-4 n x+8 x-4 n \\
& =(2 x-n+2)^{2}
\end{aligned}
$$

Lemma 2: The least integer i for which $4 k_{i}+5 n^{2}$ is a nonnegative square is $i(n)$.
Proof: Let

$$
\delta_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

We solve the equation $4 k_{i}+5 n^{2}=\delta_{n}$ for i :

$$
\begin{aligned}
\delta_{n} & =4\left[k_{1}+(i-1) m+(i-1)^{2}\right]+5 n^{2} \\
& =4 k_{1}+5 n^{2}+4(i-1) m+4(i-1)^{2} \\
& =m^{2}+4(i-1) m+4(i-1)^{2} \\
& =[m+2(i-1)]^{2}
\end{aligned}
$$

so that

$$
\delta_{n}= \pm(2 x-n+2 i) .
$$

If n is even, write $n=2 q$ and find that $2\lfloor n \tau\rfloor-2 q+2 i=0$, which yields $i=n / 2-\lfloor n \tau\rfloor$. If n is odd, write $n=2 q-1$, and find, using $\delta_{n}=-1$, that $i=(n-1) / 2-\lfloor n \tau\rfloor$.
Lemma 3: If $i \geq i(n)$, then

$$
4 k_{i}+5 n^{2}=m_{i}^{2}
$$

Proof: Using Lemma 1, we have

$$
\begin{aligned}
4 k_{i}+5 n^{2} & =4\left[k_{1}+(i-1) m+(i-1)^{2}\right]+5 n^{2} \\
& =4 k_{1}+5 n^{2}+4(i-1) m+4(i-1)^{2} \\
& =m_{i}^{2} .
\end{aligned}
$$

Lemma 4: If k is an integer for which $4 k+5 n^{2}$ is a square, then k is one of the numbers k_{i}, where $i \geq i(n)$.

Proof: Suppose $4 k+5 n^{2}$ is a square, M^{2}. Then M has the same parity as n, so that M must be one of the list, exhaustive by Lemma 2, of consecutive same-parity squares given by Lemma 1 .
Lemma 5: $k_{1} \geq 1$.
Proof: Let f be the fractional part of $n \tau$, so that

$$
0<f=n \tau-\lfloor n \tau\rfloor<1 .
$$

Then

$$
\begin{aligned}
k_{1} & =\lfloor n \tau\rfloor^{2}+(2-n)\lfloor n \tau\rfloor-n^{2}-n+1 \\
& =(1-f)[(1-f)+(2 \tau-1) n] \\
& \geq 1 .
\end{aligned}
$$

Lemma 6: $\quad k_{0} \leq-1$.
Proof:

$$
\begin{aligned}
k_{0} & =k_{1}-m+1 \\
& =k_{1}-(n\lfloor n \tau\rfloor-n+1)+1 \\
& =(-\sqrt{5} n+f) f \\
& \leq-1 .
\end{aligned}
$$

Lemma 7: If $i \geq 2$, then $m_{i} \leq k_{i}$.

Proof:

$$
\begin{aligned}
m_{i} & =m+2 i-2 \\
& \leq(i-1) m+(i-1)^{2} \\
& \leq k_{i} .
\end{aligned}
$$

by Lemma 5 and (6).
We now prove Theorem 1 . Let $k=k_{1}$ and $j=m-k_{1}-1$, so that $m=j+k+1$. By Lemma $1,4 k+5 n^{2}=m^{2}$. By Lemmas 4 and 6 , if $\widehat{k}<k$ and $4 \widehat{k}+5 n^{2}$ is a square, then $k \leq-1$. By Lemmas 4 and 5 , if $\widehat{k}>k$ and $4 \widehat{k}+5 n^{2}$ is a square, then $j \leq-1$. Therefore k and j are the only pair of positive integers \widehat{k} and \widehat{j} that satisfy

$$
(\widehat{j}+\widehat{k}+1)^{2}-4 \widehat{k}=5 n^{2},
$$

hence, they provide the unique solution of (1).

3. THE WYTHOFF DIFFERENCE ARRAY

Regarding equation (1), we now ask, for any fixed j, this question: what values of n are generated? The answer is surprising and simple: a row of the WDA. We shall prove that as j ranges through a certain nonincreasing sequence, the corresponding rows are the consecutive rows of the WDA. To that end, suppose $g \geq 1$ and $h \geq 1$, and abbreviate $\lfloor g \tau\rfloor$ as x. Let

$$
\begin{align*}
& j=j(g)=x^{2}-(g-1) x-(g-1)^{2}, \\
& k=k(g, h)=g^{2}+\left(g-1+L_{2 h-1}\right) x-x^{2}+(g-1)\left(L_{2 h-2}-2\right), \tag{8}\\
& n=n(g, h)=x F_{2 h-1}+(g-1) F_{2 h-2} . \tag{9}
\end{align*}
$$

In view of (2), what we wish to prove is that

$$
\begin{equation*}
(j+k+1)^{2}-4 k=5 n^{2} . \tag{10}
\end{equation*}
$$

We have

$$
j+k+1=L_{2 h-1}+(g-1) L_{2 h-2}+2,
$$

so that, abbreviating $L_{2 h-1}$ as \widehat{L}_{1} and $L_{2 h-2}$ as \widehat{L}_{2},

$$
\begin{aligned}
(j+k+1)^{2}-4 k= & \left(x \widehat{L}_{1}+(g-1) \widehat{L}_{2}+2\right)^{2} \\
& -4\left(g^{2}+\left(g-1+\widehat{L}_{1}\right) x-x^{2}+(g-1)\left(\widehat{L}_{2}-2\right)\right) \\
= & 8 g+4 x-4 g x-2 x \widehat{L}_{1} \widehat{L}_{2}+2 g x \widehat{L}_{1} \widehat{L}_{2} \\
& -4 g^{2}+4 x^{2}+\widehat{L}_{2}^{2}-2 g \widehat{L}_{2}^{2}+g^{2} \widehat{L}_{2}^{2}+x^{2} \widehat{L}_{1}^{2}-4 \\
= & x^{2} \widehat{L}_{1}^{2}+2 x \widehat{L}_{1} \widehat{L}_{2}(g-1)+\widehat{L}_{2}^{2}(g-1)^{2} \\
& +8 g+4 x-4 g x-4 g^{2}+4 x^{2}-4 .
\end{aligned}
$$

Now using the well-known identities

$$
\begin{gather*}
\widehat{L}_{1}^{2}=L_{4 h-4}+L_{4 h-3}-2, \tag{11}\\
\widehat{L}_{2}^{2}=L_{4 h-4}+2, \tag{12}\\
\widehat{L}_{1} \widehat{L}_{2}=L_{4 h-3}+1 \tag{13}
\end{gather*}
$$

in (9), we have

$$
\begin{align*}
(j+k+1)^{2}-4 k= & x^{2}\left(L_{4 h-4}+L_{4 h-3}-2\right)+2 x(g-1)\left(L_{4 h-3}+1\right) \\
& +(g-1)^{2}\left(L_{4 h-4}+2\right) \\
& +8 g+4 x-4 g x-4 g^{2}+4 x^{2}-4 \\
= & L_{4 h-3}\left[x^{2}+2 x(g-1)\right]+L_{4 h-4}\left[x^{2}+(g-1)^{2}\right] \tag{14}\\
& +2\left[x^{2}-(g-1) x-(g-1)^{2}\right] . \tag{15}
\end{align*}
$$

Thus, the left-hand side of (10) is expressed in terms of the Lucas numbers $L_{4 h-4}$ and $L_{4 h-3}$. We shall next convert the right-hand side of (8) to the same expression:

$$
\begin{aligned}
5 n^{2} & =5\left[x F_{2 h-1}+(g-1) F_{2 h-2}\right]^{2} \\
& =5 x^{2} F_{2 h-1}^{2}+10 x(g-1) F_{2 h-1} F_{2 h-2}+5(g-1)^{2} F_{2 h-2}^{2} .
\end{aligned}
$$

Applying the well-known identities

$$
\begin{align*}
5 F_{2 h-1}^{2} & =L_{4 h-4}+L_{4 h-3}+2, \tag{16}\\
5 F_{2 h-2}^{2} & =L_{4 h-4}-2, \tag{17}\\
5 F_{2 h-1} F_{2 h-2} & =L_{4 h-3}-1, \tag{18}
\end{align*}
$$

gives

$$
5 n^{2}=x^{2}\left(L_{4 h-4}+L_{4 h-3}+2\right)+2 x(g-1)\left(L_{4 h-3}-1\right)+(g-1)^{2}\left(L_{4 h-4}-2\right),
$$

as in (14) and (15), so that (10) is now proved

4. THE FRAENKEL ARRAY

In Section 3, we showed a method of generating by rows; to summarize, for each $j=j(g)$ for which (1), and hence (8), has a solution, the corresponding numbers $k=k(g, h)$ and $n=n(g, h)$ were generated. In this section, we shall reverse the roles of j and k. That is, for each $k=k(g)$, we recognize all the $j(g, h)$ and thus generate a row of numbers $n(g, h)$. For the sake of analogy, we use the same notation as in Section 2; however, as functions, j, k, and n are not the same as in Section 2. Moreover, in this section, the symbol x abbreviates $\lfloor(g-1) \tau\rfloor$ rather than $\lfloor g \tau\rfloor$.

Let

$$
\begin{align*}
k & =k(g)=(x+g+1) g-(x-1)^{2}, \\
j & =j(g, h)=x^{2}+\left(L_{2 h-1}+2-g\right) x-g^{2}+\left(L_{2 h-2}-1\right) g+L_{2 h-1}, \tag{19}\\
n & =n(g, h)=(x+1) F_{2 h-1}+g F_{2 h-2} . \tag{20}
\end{align*}
$$

Then

$$
j+k+1=(x+1) L_{2 h-1}+g L_{2 h-2},
$$

and

$$
\begin{aligned}
(j+k+1)^{2}-4 k= & (x+1)^{2} L_{2 h-1}^{2}+2 g(x+1) L_{2 h-2} L_{2 h-1}+g^{2} L_{2 h-2}^{2} \\
& -4\left[(x+g+1) g-(x+1)^{2}\right] .
\end{aligned}
$$

Applying (11)-(13) and simplifying give

$$
\begin{aligned}
(j+k+1)^{2}-4 k= & L_{4 h-3}(x+g+1) L_{4 h-4}(x+1)^{2} \\
& +2\left[(x+1)^{2}+g(1-x-g)\right] .
\end{aligned}
$$

Meanwhile,

$$
5 n^{2}=5\left[(x+1) F_{2 h-1}+g F_{2 h-2}\right]^{2},
$$

which, using (16)-(18), simplifies to the expression already obtained for $(j+k+1)^{2}-4 k$.

5. GESSEL'S THEOREM GENERALIZED

Gessel's Theorem [2] can be stated in two parts:
The solutions of $5 n^{2}+4=m^{2}$ are the pairs $(m, n)=\left(L_{2 h}, F_{2 h}\right)$;
the solutions of $5 n^{2}-4=m^{2}$ are the pairs $(m, n)=\left(L_{2 h-1}, F_{2 h-1}\right)$.
Recall from Section 4 that row 1 of the Fraenkel array is generated from (10) with $k=1$, as j runs through the numbers $L_{2 h}-2$, so that m runs through the alternating Lucas numbers $L_{2 h}$. The fact that row 1 consists of the numbers $F_{2 h}$ in increasing order implies the first part of Gessel's theorem. Row 2 of the Fraenkel array corresponds to $g=2$ and $k=4$, for which j takes the values $1,9,31, \ldots, m$ takes the values $6,14,36, \ldots, n$ takes the values $2,6,16, \ldots$, and the pairs $(m, n)=\left(2 L_{h}, 2 F_{h}\right)$ solve the equation $5 n^{2}+16=m^{2}$. In like manner, row 3 gives the solutions of the equation $5 n^{2}+20=m^{2}$. In general, row g of the Fraenkel array gives the solutions of the equation

$$
5 n^{2}+4 k(g)=m^{2}
$$

where $k(g)$ is as given by (4).
Recall from Section 3 that row 1 of the WDA is generated from (10) with $j=1$, as k runs through the alternating Lucas numbers $L_{2 h-1}$. The fact that row 1 consists of the numbers $F_{2 h-1}$ in increasing order constitutes a proof of the first part of Gessel's theorem, quite different from the proofs in [2]. We shall show here that the other rows of the WDA
correspond to complete solutions of equations similar to $5 n^{2}-4=m^{2}$. It is easy to check that equation (10) is equivalent to

$$
\begin{aligned}
5 n^{2}-4 j & =(j+k-1)^{2} \\
& =(m-2)^{2},
\end{aligned}
$$

so that row g of the WDA gives the solutions of the equation

$$
5 n^{2}-4 j(g)=(m-2)^{2},
$$

where $j(g)$ is as given by (2) (with g substituted for n). For example, row 4 , giving solutions of the equation $5 n^{2}+36=(m-2)^{2}$ consists of the numbers $n=n(h)$:

$$
6,15,39,102, \ldots ;
$$

using $j=9$, we find the numbers $m(h)$:

$$
14,35,89,230, \ldots,
$$

given by $m(h)=2+3 L_{2 h+1}$.

6. THE COMPLEMENTARY EQUATION $b(n)=a(j n)+k n$

As in [4], under the assumption that sequences a and b partition the sequence of positive integers, the designation complementary equations applies to equations such as $b(n)=a(j n)+$ $k n$, where j and k are fixed positive integers. For example, the solutions of the equation $b(n)=a(n)+n$ is the sequence b given by $b(n)=\left\lfloor n \tau^{2}\right\rfloor$, or equivalently, by $a(n)=\lfloor n \tau\rfloor$. It is shown in [4] that the equation $b(n)=a(j n)+k n$ is solved by a pair of Beatty sequences

$$
a(n)=\lfloor r n\rfloor, \quad b(n)=\lfloor s n\rfloor,
$$

where r and s are determined as follows: let

$$
\begin{align*}
p & =\frac{j-k+1}{2} \tag{21}\\
\sqrt{q} & =\frac{\sqrt{(j+k+1)^{2}-4 k}}{2}
\end{align*}
$$

Then

$$
r=\frac{p+\sqrt{q}}{j} \quad \text { and } \quad s=\frac{j \sqrt{q}+q+j p-p^{2}}{q-(p-j)^{2}},
$$

where r and s are related by

$$
\frac{1}{r}+\frac{1}{s}=1
$$

In this section, we seek those pairs (j, k) for which r has the form $c+d \sqrt{5}$, where c and d are rational and $d \neq 0$. In view of (21), the problem is essentially solved in Section 2 , with solutions given by (2) and (3). For example, for $(j, k)=(1,4)$, we have

$$
r=-1+\sqrt{5} \quad \text { and } \quad s=3+\sqrt{5} .
$$

For $(j, k)=(5,1)$, we have

$$
r=\frac{5+3 \sqrt{5}}{10} \quad \text { and } \quad s=\frac{7+3 \sqrt{5}}{2},
$$

and for $(j, k)=(4,5)$,

$$
r=\frac{\sqrt{5}}{2} \quad \text { and } \quad s=5+2 \sqrt{5}
$$

REFERENCES

[1] A. S. Fraenkel. "Arrays, Numeration Systems and Frankenstein Games." Theoretical Computer Science 282 (2002): 271-284.
[2] I. M. Gessel. "Problem H-187: n is a Fibonacci Number If and Only If $5 n^{2}+4$ or $5 n^{2}-4$ is a Square." The Fibonacci Quarterly 10 (1972): 417.
[3] C. Kimberling, "The Wythoff Difference Array," Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, The Fibonacci Association, 2006, forthcoming.
[4] C. Kimberling. "Complementary Equations." Journal of Integer Sequences 10.1 (2007): Article 07.1.4, 14 pp.
[5] N. J. A. Sloane, editor. The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/ ${ }^{\sim}$ njas/sequences/.
[6] N. J. A. Sloane, Classic Sequences In The On-Line Encyclopedia of Integer Sequences: (Part 1:) The Wythoff Array and The Para-Fibonacci Sequence, http://www.research.att.com/ ${ }^{\sim}$ njas/sequences/classic.html.

AMS Classification Numbers: 11B39, 11B37, 11D09

