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ABSTRACT

There are several well-known formulas counting the number of distinct allocations of n

indistinguishable objects into m distinguishable cells, each of which has capacity k− 1. In the
present paper we generalize four of them by relaxing the assumption that each of the m cells
has capacity k − 1 and assuming instead that there are s kinds of cells and each cell of kind i

has capacity ki − 1 (i = 1, . . . , s). A generalization of the Pascal triangles of order k is also
discussed.

1. INTRODUCTION

Denote by Nk(m,n) the number of distinct allocations of n indistinguishable objects into
m distinguishable cells, each of which has capacity k − 1. It is well-known (see, e.g. Freund
[6], Riordan [14, p. 104], and Bondarenko [3, p. 22], that

Nk(m,n) =
m∑

j=0

(−1)j

(
m

j

)(
n− kj + m− 1

m− 1

)
, (1.1)

Nk(m,n) =
k−1∑
j=0

Nk(m− 1, n− j), (1.2)

Nk(m,n) = Nk(m,n− 1) + Nk(m− 1, n)−Nk(m− 1, n− k), (1.3)

and

Nk(m,n) =
m∑

j=0

(
m

j

)
Nk−1(j, n− j). (1.4)
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Throughout the paper, for m, n integers, the binomial coefficient
(
m
n

)
is equal to 1, if m ≥ 0

and n = 0 or m = n; it is equal to
∏n

j=1(m − j + 1)/
∏n

j=1 j, if m > n > 0, and equals 0,
otherwise.

The number Nk(m,n) has been used extensively in reliability and probability studies
(see, e.g. Derman, Lieberman and Ross [5], Sen, Agarwal and Bhattacharya [15], Makri and
Philippou [7], and Makri, Philippou and Psillakis [9]. Instead of Nk(m,n), some authors (e.g.
Bondarenko [3], R. L. Ollerton and A. G. Shannon [11, 12] use the notation

(
m
n

)
k
, and name

the latter generalized binomial coefficient of order k. For k = 2, relations (1.1) and (1.2) reduce
to:

N2(m,n) =
(

m

n

)
2

=
(

m

n

)
, and

(
m

n

)
=

(
m− 1

n

)
+

(
m− 1
n− 1

)
.

As Freund [6] observed, recurrence (1.2), defines a generalized Pascal triangle as an array
whose (m,n) entry (Nk(m,n)) equals the sum of the k entries above it and to the left
(
∑k−1

j=0 Nk(m− 1, n− j)). For more on generalized Pascal triangles, or to be more precise
Pascal triangles of order k, we refer to Philippou and Georghiou [13], Bollinger [1, 2], and
Ollerton and Shannon [10].

In the present paper we generalize relations (1.1)-(1.4) to the case of s kinds of cells.
This we do in Section 2. We also discuss, in Section 3, the corresponding generalized Pascal
triangles.

2. RESTRICTED OCCUPANCY OF S KINDS OF CELLS

Presently we relax the assumption that each of the m cells has capacity k−1 by assuming
instead that there are s kinds of cells and each one of kind i has capacity ki − 1 (i = 1, . . . , s).
We first derive the following generalization of (1.1).

Proposition 2.1: For k = (k1, . . . , ks) and m = (m1, . . . ,ms), denote by Nk(m, n) the num-
ber of distinct allocations of n indistinguishable objects into m distinguishable cells. Assume
that each of mi specified cells has capacity ki − 1 (i = 1, . . . , s) and set m = m1 + . . . + ms.
Then,

Nk(m, n) =
m1∑

j1=0

. . .

ms∑
js=0

(−1)j1+...+js

(
m1

j1

)
. . .

(
ms

js

)(
m− 1 + n− k1j1 − . . . − ksjs

m− 1

)
. (2.1)

Proof: Let g(t) be the generating function of Nk(m, n). Then,

348 [NOVEMBER



RESTRICTED OCCUPANCY OF s KINDS OF CELLS AND GENERALIZED PASCAL TRIANGLES

g(t) =
∞∑

n=0

Nk(m, n)tn =
s∏

i=1

(1 + t + t2 + . . . + tki−1)mi

=

[
s∏

i=1

(1− tki)mi

]
(1− t)−m, m =

s∑
i=1

mi

=

 s∏
i=1

mi∑
ji=0

(−1)ji

(
mi

ji

)
tkiji

 ∞∑
j=0

(
m− 1 + j

m− 1

)
tj ,

by the binomial theorem,

=
∞∑

n=0

∑ [
s∏

i=1

(−1)ji

(
mi

ji

)] (
m− 1 + j

m− 1

)
tn,

where the inner summation is over all nonnegative integers j, j1, j2, . . . , js, satisfying the con-
ditions ji ≤ mi (i = 1, . . . , s) and j +

∑s
i=1 kiji = n. Therefore,

Nk(m, n) =
∑ [

s∏
i=1

(−1)ji

(
mi

ji

)] (
m− 1 + j

m− 1

)
,

from which the proposition follows.

For s = 1, Proposition 1.1 reduces to relation (1.1). For s = 2, it reduces to

Nk1,k2(m1,m2, n) =
m1∑

j1=0

m2∑
j2=0

(−1)j1+j2

(
m1

j1

)(
m2

j2

)(
m− 1 + n− k1j1 − k2j2

m− 1

)
, (2.2)

a result derived and employed by Makri, Philippou and Psillakis [8] (2007a) to study Polya,
inverse Polya and circular Polya distributions of order k for l-overlapping success runs. We
proceed now to generalize recurrences (1.2) - (1.4).

Proposition 2.2: Let Nk(m, n) be as in Proposition 2.1. Then,

Nk(m, n) =
k1−1∑
j1=0

Nk(m1 − 1,m2, . . . ,ms, n− j1), (2.3)
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Nk(m, n) =
ki−1∑
ji=0

Nk(m1, . . . , mi−1,mi − 1,mi+1, . . . , ms, n− ji), i = 2, . . . , s− 1, (2.4)

and

Nk(m, n) =
ks−1∑
js=0

Nk(m1,m2, . . . ,ms−1,ms − 1, n− js). (2.5)

Proof: It suffices to show (2.3). We first note that by employing (2.1) and the Pascal
triangle identity

(
m1
j1

)
=

(
m1−1
j1−1

)
+

(
m1−1

j1

)
, we get

Nk(m, n) = S1 + S2 (2.6)

with

S1 =
m1∑

j1=1

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+j2+...+js

(
m1 − 1
j1 − 1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1 + n−

∑s
i=1 kiji

m− 1

)

=
m1−1∑
j1

′
=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1
′
+j2+...+js+1

(
m1 − 1

j1
′

)(
m2

j2

)
. . .

(
ms

js

)

×
(

m− 1− k1 + n− k1j1
′
−

∑s
i=2 kiji

m− 1

)

on setting j1
′
= j1 − 1, and

S2 =
m1−1∑
j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+j2+...+js

(
m1 − 1

j1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1 + n−

∑s
i=1 kiji

m− 1

)

=
m1−1∑
j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+j2+...+js

(
m1 − 1

j1

)(
m2

j2

)
. . .

(
ms

js

)

×

(
m− 1− k1 + n−

∑s
i=1 kiji

m− 1

)
+

k1−1∑
j=0

(
(m− 1)− 1 + n− j −

∑s
i=1 kiji

(m− 1)− 1

) .
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The last equality follows by means of the“vertical” recurrence relation (Charalambides [4, p.
129] (

x

k

)
=

(
x− r − 1

k

)
+

r∑
j=0

(
x− j − 1

k − 1

)
,

which holds true for any real number x and any nonnegative integer k. By interchanging the
order of summation we obtain that

S2 =
m1−1∑
j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+j2+...+js

(
m1 − 1

j1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1− k1 + n−

∑s
i=1 kiji

m− 1

)

+
k1−1∑
j=0

[
m1−1∑
j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+j2+...+js

(
m1 − 1

j1

)(
m2

j2

)
. . .

(
ms

js

)

×
(

(m− 1)− 1 + n− j −
∑s

i=1 kiji

(m− 1)− 1

)]

= −S1 +
k1−1∑
j=0

Nk(m1 − 1,m2, . . . ,ms, n− j).

Substituting S2 in (2.6) the proposition follows.

For s = 1 Proposition 2.2 reduces to (1.2). For s = 2, it reduces to

Nk1,k2(m1,m2, n) =
k1−1∑
j1=0

Nk1,k2(m1 − 1,m2, n− j1), (2.7)

and

Nk1,k2(m1,m2, n) =
k2−1∑
j2=0

Nk1,k2(m1,m2 − 1, n− j2). (2.8)

Furthermore, by usage of (2.3)-(2.5) we get

Nk(m, n) =
k1−1∑
j1=0

. . .

ks−1∑
js=0

Nk(m1 − 1, . . . ,ms − 1, n− j1 − . . .− js), (2.9)
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which, for s = 2, reduces to

Nk1,k2(m1,m2, n) =
k1−1∑
j1=0

k2−1∑
j2=0

Nk1,k2(m1 − 1,m2 − 1, n− j1 − j2).

Proposition 2.3: Let Nk(m, n) be as in Proposition 2.1. Then,

Nk(m, n) = Nk(m, n−1)+Nk(m1−1,m2, . . . ,ms, n)−Nk(m1−1,m2, . . . ,ms, n−k1), (2.11)

Nk(m, n) = Nk(m, n− 1) + Nk(m1, . . . , mi−1,mi − 1,mi+1, . . . , ms, n)

−Nk(m1, . . . ,mi−1,mi − 1,mi+1, . . . , ms, n− ki), i = 2, . . . , s− 1,
(2.12)

and

Nk(m, n) = Nk(m, n−1)+Nk(m1,m2, . . . ,ms−1, n)−Nk(m1,m2, . . . ,ms−1,ms−1, n−ks).
(2.13)

Proof: It suffices to show (2.11). By Proposition 2.1 and the Pascal triangle identity

Nk(m, n) =
m1∑

j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+...+js

(
m1

j1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1 + n− 1−

∑s
i=1 kiji

m− 1

)

+
m1∑

j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+...+js

(
m1

j1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1 + n− 1−

∑s
i=1 kiji

m− 1− 1

)

= Nk(m, n− 1)

+
m1−1∑
j1=0

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+...+js

(
m1 − 1

j1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1− 1 + n−

∑s
i=1 kiji

m− 1− 1

)

+
m1∑

j1=1

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+···+js

(
m1 − 1
j1 − 1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1− 1 + n−

∑s
i=1 kiji

m− 1− 1

)

= Nk(m, n− 1) + Nk(m1 − 1,m2, . . . , ms, n)

+
m1∑

j1=1

m2∑
j2=0

. . .

ms∑
js=0

(−1)j1+...+js

(
m1 − 1
j1 − 1

)(
m2

j2

)
. . .

(
ms

js

)(
m− 1− 1 + n−

∑s
i=1 kiji

m− 1− 1

)
.
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The result follows by setting j1 − 1 = j
′

1 in the sum of the last equality.
For s = 1 Proposition 2.3 reduces to (1.3). For s = 2, it reduces to

Nk1,k2(m1,m2, n) = Nk1,k2(m1,m2, n−1)+Nk1,k2(m1−1,m2, n)−Nk1,k2(m1−1,m2, n−k1),
(2.14)

and

Nk1,k2(m1,m2, n) = Nk1,k2(m1,m2, n−1)+Nk1,k2(m1,m2−1, n)−Nk1,k2(m1,m2−1, n−k2).
(2.15)

Proposition 2.4: Let Nk(m, n) be as in Proposition 2.1. Then,

Nk(m, n) =
m1∑

j1=0

. . .

ms∑
js=0

(
m1

j1

)
. . .

(
ms

js

)
Nk−1(j1, . . . , js, n− j1 − · · · − js). (2.16)

Proof: We consider the proof of (2.16) as a classical occupancy problem. Let A be the
set of allocations of n indistinguishable objects into m distinguishable cells such that each of
mi specified cells may be occupied by at most ki−1 objects (cells of the ith kind), i = 1, . . . , s

(m = m1 + · · ·+ ms).

For i = 1, . . . , s, let A
(i)
ji

be the subset of these allocations in which ji cells, ji =
0, 1, . . . , mi, of the ith kind are occupied (and consequently the remaining mi − ji cells of
the ith kind remain empty). For given j1, . . . , js and any specified selection of j1 cells out
of m1 of the 1st kind, . . . , js cells out of ms of the sth kind, one object is placed in each of
these j1 + · · ·+ js specified cells. Next, note that the number of allocations of the remaining
n − (j1 + · · · + js) objects into the j1 + · · · + js cells, under the restrictions of the capacities
of the cells, equals

Nk−1(j1, . . . , js, n− (j1 + · · ·+ js))

by Proposition 2.1. Further, the j1, . . . , js cells can be chosen in

(
m1

j1

)
. . .

(
ms

js

)
, ji = 0, 1, . . . , mi, i = 1, 2, . . . , s

ways. So, according to the multiplicative principle, the number of the elements of the set
A

(1)
j1

⋂
· · ·

⋂
A

(s)
js

equals

(
m1

j1

)
. . .

(
ms

js

)
Nk−1(j1, . . . , js, n− (j1 + · · ·+ js)).

Thus, summing for all values of ji = 0, 1, . . . , mi, i = 1, . . . , s, according to the addition
principle, we deduce (2.16).
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For s = 1 Proposition 2.4 reduces to (1.4). For s = 2, it reduces to

Nk1,k2(m1,m2, n) =
m1∑

j1=0

m2∑
j2=0

(
m1

j1

)(
m2

j2

)
Nk1−1,k2−1(j1, j2, n− j1 − j2). (2.17)

3. GENERALIZED PASCAL TRIANGLES OF ORDER k

In this section, we note that the s recurrences (2.3)-(2.5) define a generalized Pascal
triangle (hyper cube), which we call Pascal triangle of order k and denote by Tk(m, n), as
the hyper cube whose (m, n) entry Nk(m, n) equals any one of the ki sums (i = 1, . . . , s)
appearing on the right-hand side of (2.3)-(2.5). For example, recurrence (2.3) gives the (m, n)
entry Nk(m, n) of Tk(m, n) as the sum of the k1 entries Nk(m1 − 1,m2, . . . , ms, n − j), j =
0, 1, . . . , k1− 1. For s = 2, the (m1,m2, n) entry of the Pascal triangle (cube) of order (k1, k2)
equals the sum of the k1 entries Nk1,k2(m1 − 1,m2, n− j), j = 0, 1, . . . , k1 − 1. It is also equal
to the sum of the k2 entries Nk1,k2(m1,m2 − 1, n− j), j = 0, 1, . . . , k2 − 1.

Geometrically, we could use recurrence (2.7) to construct a cube with entries Nk1,k2

(m1,m2, n). Consider a cube such that, on its upper (horizontal) side (Pu), a generalized
Pascal triangle of order k1, Tk1(m1, n) is created Freund [6], e.g., its first row m1 = 0 consists
of a 1 and no other entries and each other entry is obtained as the sum of the entry immediately
above and the k1 − 1 entries to its left.

Next, on the left vertical side of the cube (Pv), perpendicular to the upper side, a general-
ized Pascal triangle of order k2, Tk2(m2, n) is created (see the following figure, which provides
an illustration for k1 = 3, k2 = 4).

Note that the (m1, n) entry of Tk1(m1, n) is simultaneously the (m1, 0, n) entry of the cube,
and the (m2, n) entry of Tk2(m2, n) is simultaneously the (0,m2, n) entry of the cube.

For a given value of m2 = m we consider a plane parallel to the upper side of the cube
which intersects the left vertical side of the cube at the row m2 = m of Tk2(m2, n). On this new
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plane an array is constructed with its first row (m1 = 0) being the m2 = m row of Tk2(m2, n)
and each other entry is obtained as the sum of the entry immediately above and the k1 − 1
entries to its left. Nk1,k2(m1,m2, n), which represents the number of distinct allocations of n

indistinguishable objects into m1 distinguishable cells each of which has capacity k1 − 1 and
m2 distinguishable cells each of which has capacity k2 − 1, is the (m1, n) entry of this array.
A similar procedure could be followed using recurrence (2.8).

To make it more clear, we note that in order to calculate Nk1,k2(u, v, n) we first construct
Tk2(m2, n) until its line m2 = v. In the sequel we construct an array (am1,n) with its first row
(m1 = 0) being the m2 = v row of Tk2(m2, n) and each other entry of the array is obtained as
the sum of the entry above and k1 − 1 entries to the left of the one immediately above.

As an example, we give the calculation of N3,4(m1, 6, n). First, we construct T4(m2, n).

m2\n 0 1 2 3 4 5 6
0 1
1 1 1 1 1
2 1 2 3 4 3 2 1
3 1 3 6 10 12 12 10
4 1 4 10 20 31 40 44
5 1 5 15 35 65 101 135
6 1 6 21 56 120 216 336

Then we construct T3,4(m1, 6, n) = T3(m1, n) with N3(0, n) = N4(6, n),

m1\n 0 1 2 3 4 5 6
0 1 6 21 56 120 216 336
1 1 7 28 83 197 392 672
2 1 8 36 118 308 672 1261
3 1 9 45 162 462 1098 2241
4 1 10 55 216 669 1722 2865
5 1 11 66 281 940 2607 3750
6 1 12 78 358 1287 3828 4971

from which N3,4(m1, 6, n) are readily available. For example,

N3,4(2, 6, 5) = N3(2, 5) = 672,

N3,4(5, 6, 3) = N3(5, 3) = 281,

N3,4(6, 6, 4) = N3(6, 4) = 1287.

2007] 355



THE FIBONACCI QUARTERLY

REFERENCES

[1] R. C. Bollinger. “A Note on Pascal-T Triangles, Multinomial Coefficients and Pascal
Pyramids.” The Fibonacci Quarterly 24 (1986): 140–144.

[2] R. C. Bollinger. “Extended Pascal Triangles.” Mathematics Magazine 66.2 (1993): 87–94.
[3] B. A. Bondarenko. Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs,

and Applications, The Fibonacci Association, (1993).
[4] C. A. Charalambides. Enumerative Combinatorics, Chapman and Hall/CRC, Boca Raton,

FL, (2002).
[5] C. Derman, G. Lieberman, S. Ross. “On the Consecutive-k-of n:F System.” IEEE Trans.

Reliability 31 (1982): 57–63.
[6] J. E. Freund. “Restricted Occupancy Theory. A Generalization of Pascal’s Triangle.”

American Mathematical Monthly 63 (1956): 20–27.
[7] F. S. Makri and A. N. Philippou. “On Binomial and Circular Binomial Distributions

of Order k for l-overlapping Success Runs of Length k.” Statistical Papers 46.3 (2005):
411–432.

[8] F. S. Makri, A. N. Philippou, and Z. M. Psillakis. “Polya, Inverse Polya and Circular Polya
Distributions of Order k for l-overlapping Success Runs.” Communications in Statistics-
Theory and Methods 36 (2007a): 657–668.

[9] F. S. Makri, A. N. Philippou, and Z. M. Psillakis. “Shortest and Longest Length of
Success Runs in Binary Sequences.” Journal of Statistical Planning and Inference 137
(2007b): 2226–2239.

[10] R. L. Ollerton and A. G. Shannon. “Some Properties of Generalized Pascal Squares and
Triangles.” The Fibonacci Quarterly 36 (1998): 140–144.

[11] R. L. Ollerton and A. G. Shannon. “Extensions of Generalized Binomial Coefficients.”
In Applications of Fibonacci Numbers, Volume 9. Edited by F. T. Howard, Dordrecht:
Kluwer Academic Publishers, 2004, 187–199.

[12] R. L. Ollerton and A. G. Shannon. “Further Properties of Generalized Binomial Coeffi-
cient k-extensions.” The Fibonacci Quarterly 43 (2005): 124–129.

[13] G. N. Philippou and C. Georghiou. “Fibonacci-type Polynomials and Pascal Triangles
of Order k.” In Fibonacci Numbers and Their Applications. Edited by A. N. Philippou,
G. E. Bergum, and A. F. Horadam, Dordrecht: D. Reidel Publishing Company, 1986,
229–233.

[14] J. Riordan. An Introduction to Combinatorial Analysis. Wiley, New York, (1964).
[15] K. Sen, M. Agarwal and S. Bhattacharya. “On Circular Distributions of Order k Based on

Polya-Eggenberger Sampling Scheme.” The Journal of Mathematical Sciences 2 (2003):
34–54.

AMS Classification Numbers: 05A10, 11B65

z z z

356 [NOVEMBER


