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ABSTRACT

Let (xn) denote a sequence which is linearly convergent to a limit x, and whose second
differences are all nonzero. For a large class of such sequences (xn), the associated sequence
(x∗n) defined by

x∗n =
xn+1xn−1 − x2

n

xn+1 − 2xn + xn−1

converges to x faster than (xn). The derivation of this associated sequence is called Aitken
acceleration. In a paper published in 1984 I showed that, with xn = Fn+1/Fn,

xn+rxn−r − x2
n

xn+r − 2xn + xn−r
= x2n

for 1 ≤ r < n so that, in particular, x∗n = x2n. Thus, we have an associated sequence that is a
subsequence of the original sequence. A number of authors have followed up this result and in
the present paper I summarize the progress made on this topic to date and present some new
results.

1. INTRODUCTION

Let (xn) denote a sequence of real numbers that converges to the limit x, and let

x∗n =
xn+1xn−1 − x2

n

xn+1 − 2xn + xn−1
, (1)

assuming that the denominator on the right side of (1) is nonzero. The derivation of the
associated sequence (x∗n) is called Aitken acceleration, after A.C. Aitken (1895–1967). Observe
that x∗n immediately yields the limit x when

xn − x = aρn,

where a and ρ are real with 0 < |ρ| < 1.
Given a sequence (xn) with limit x such that

xn+1 − x

xn − x
= ρ + εn,
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where 0 < |ρ| < 1 and εn → 0 as n → ∞, then (see Henrici [5]) the sequence (x∗n) is
defined for n sufficiently large and converges to x faster than the original sequence (xn), in the
sense that

lim
n→∞

x∗n − x

xn − x
= 0.

Aitken acceleration was routinely used to speed up convergence of a sequence in the latter part
of the period when extensive numerical work was carried out on desk machines.

Circa 1965, I found by chance a sequence (xn) whose accelerated sequence (x∗n) is a
subsequence of (xn). In a discussion of simple iterative methods in an introductory course on
numerical analysis, I considered the test equation x2 − x− 1 = 0 and found the positive root
by using the iterative process

xn+1 = 1 +
1
xn

, n ≥ 1,

with x1 = 1. In this case

xn =
Fn+1

Fn
, n ≥ 1, (2)

where (Fn) is the Fibonacci sequence. The sequence (xn) converges to the golden ratio,
1
2

(√
5 + 1

)
, the positive root of x2 − x− 1, and we can show (see [9]) that

xn+rxn−r − x2
n

xn+r − 2xn + xn−r
=

F2n+1

F2n
= x2n (3)

for n > r > 0. In particular, on putting r = 1 in (3), we obtain

x∗n = x2n. (4)

If we use Aitken acceleration on (x∗n) to give a sequence (x∗∗n ), we see from (4) and (3) that

x∗∗n = x∗2n = x4n.

We can continue by accelerating the sequence (x∗∗n ), and so on. With each acceleration we
double the suffix in the sequence defined by (2). These ideas have been pursued by others,
including Brezinski and Lembarki [4], Jamieson [6, 7], and Alexander [3].

It is interesting to note what A.C. Aitken himself had to say about the Fibonacci numbers.
The following quotation is the first sentence of a letter that Aitken wrote to the biologist D’Arcy
Thompson (1860–1948) on 20 December 1938:

Any mention of the Fibonacci numbers is always sure to draw me. All the ro-
mance of continued fractions, linear recurrence relations, surd approximations to in-
tegers and the rest lies in them; and they are a source of endless curiosity.
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For biographical information about Aitken, see [1, 2, 10].

2. GENERALIZED FIBONACCI NUMBERS

We can generalize the Fibonacci numbers by writing

Un+1 = aUn − bUn−1, (5)

with U1 = 1 and U2 = a, where a and b are nonzero real numbers. Let α and β
denote the roots of the characteristic equation

x2 − ax + b = 0, (6)

so that
α + β = a and αβ = b. (7)

Then it is easily verified that

Un =

{
αn−βn

α−β , α 6= β,

nαn−1, α = β.
(8)

The Fibonacci sequence is recovered by choosing a = −b = 1. Note that Un is defined
for all integers n, and that U0 = 0. If we wish to define xn = Un+1/Un, we need
to know when Un is zero. (For example, if we choose a = 1 and b = 1

3 , we find
that U6 = 0.) It is shown in [8] that, for n > 0, Un = 0 only if the roots of the
characteristic equation x2 − ax + b = 0 are complex and

cos−1

(
1
2
a/
√

b

)
=

kπ

n
,

where k is an integer. (Note that b is positive when the roots of the characteristic
equation are complex.) Thus, when n > 1, Un is zero only when a2 < 4b and 1

2a/
√

b is
a zero of the Chebyshev polynomial of the second kind of degree n−1. The following
theorem (see [8]) generalizes (3).

Theorem 2.1: Let xn = Un+1/Un. Then for those values of xn−r, xn, and xn+r

that are defined, we have

xn+rxn−r − x2
n

xn+r − 2xn + xn−r
=

U2n+1

U2n
= x2n (9)

for all r 6= 0.
In what follows we will also require the generalized Lucas sequence (Vn), defined

by
Vn+1 = aVn − bVn−1, (10)

with V0 = 2 and V1 = a, where a and b are nonzero real numbers. Then it is easily
verified that

Vn = αn + βn, (11)
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for all integers n, where α and β are defined by (7). We recover the Lucas sequence
from (Vn) by putting a = −b = 1. If we choose a = b = 3, we find that V3 = 0. Clearly
Vn can only be zero if α and β are a complex conjugate pair. Then b = αβ = αᾱ
must be positive and we can write

α = b1/2eiθ and β = b1/2e−iθ. (12)

We see from (7) that
a = 2b1/2 cos θ,

and we obtain from (11) that

Vn = 2bn/2 cos nθ.

The condition for Vn to be zero is that cos nθ = 0, which yields the condition

cos−1

(
1
2
a/
√

b

)
=

(2k − 1)π
2n

, (13)

where k is an integer. Thus, when n is positive, Vn is zero only when a2 < 4b and
1
2a/
√

b is a zero of the Chebyshev polynomial of degree n.
The generalized Fibonacci numbers and generalized Lucas numbers are both

special cases of the sequence (Wn) defined by

Wn+1 = aWn − bWn−1, (14)

where W0 and W1 are arbitrary real numbers. We can verify by induction that

Wn =
(

W1 −
1
2
aW0

)
Un +

1
2
W0Vn. (15)

3. FURTHER RESULTS

The following lemma is easily verified.

Lemma 3.1: Given any sequence (xn), let us define

yn = λxn + µ, (16)

where λ and µ are independent of n. Then we have

yn+ryn−r − y2
n

yn+r − 2yn + yn−r
= λ

(
xn+rxn−r − x2

n

xn+r − 2xn + xn−r

)
+ µ. (17)

Before applying Lemma 3.1, we require the following identities, which can be
verified by using (8) and (11) or by induction:

Un+k = UkUn+1 − bUk−1Un, (18)
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Vn+k = VkUn+1 − bVk−1Un. (19)

If we multiply (18) by W1− 1
2aW0, multiply (19) by 1

2W0, and add, we see from (15)
that

Wn+k = WkUn+1 − bWk−1Un. (20)

Alternatively we can verify (20) directly, using induction. We can now generalize
Theorem 2.1.

Theorem 3.1: For any nonzero integer k, let yn = Wn+k/Un. Then for those values
of yn−r, yn, and yn+r that are defined, we have

yn+ryn−r − y2
n

yn+r − 2yn + yn−r
= y2n (21)

for all r 6= 0. Thus we obtain index-doubling when we apply Aitken acceleration
repeatedly to the sequence (yn).

Proof: Let xn = Un+1/Un. Then it follows from (20) that

yn = Wkxn − bWk−1, (22)

and we see from Lemma 3.1 and Theorem 2.1 that

yn+ryn−r − y2
n

yn+r − 2yn + yn−r
= Wk

U2n+1

U2n
− bWk−1.

On applying (20) we find that

yn+ryn−r − y2
n

yn+r − 2yn + yn−r
=

W2n+k

U2n
= y2n,

and this completes the proof.

Jamieson [6] proved Theorem 3.1 for the case where a = −b = 1, W0 = 0,
W1 = 1, so that yn = Fn+k/Fn.

As another special case of the sequence defined by yn = Wn+k/Un, let us choose
W0 = 2, W1 = a, put k = 0, and let α and β in (7) be a complex conjugate pair.
Then we can write (see (12))

α = b1/2eiθ and β = b1/2e−iθ,

where

θ = cos−1

(
1
2
a/
√

b

)
.

We thus obtain

yn =
Vn

Un
= 2b1/2 sin θ cot nθ,
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and it follows as a corollary of Theorem 3.1 that we obtain index doubling when we
apply the Aitken acceleration process repeatedly to the sequence whose nth term is
cot nθ. This result was obtained, using another approach, by Jamieson [7].
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