
A NOTE ON RAMUS’ IDENTITY AND ASSOCIATED RECURSION
RELATIONS

CHARLES S. KAHANE

Abstract. A system of recursion relations is used to establish Ramus’ identity for sums of
binomial coefficients in arithmetic progression. As a by-product another recursion relation
is obtained, which has also been used to derive Ramus’ identity.

1. Introduction

Consider the sums of binomial coefficients



A
(k)
0 (n) =

∑[n/k]
m=0

(
n

km

)
,

and A
(k)
j (n) =

[(n+j)/k]∑
m=1

(
n

km− j

)
, j = 1, 2, . . . , k − 1, n ≥ 1.

(1)

In [4] Ramus obtained the following formula for these sums:

A
(k)
j (n) =

1

k

k−1∑
p=0

ωj
p (1 + ωp)

n , j = 0, 1, . . . , k − 1, n ≥ 1, (2)

where the ωp’s are the kth roots of unity:

ωp = eip2π/k, p = 0, 1, · · · , k − 1. (3)

His derivation of this identity is described in [1] as well as in [5].
In [2] Konvalina and Liu gave a different proof of (2). Their proof was based on showing

that for each fixed j = 0, 1, . . . , k − 1, A
(k)
j (n) satisfied the recursion relation

A
(k)
j (n + k) =

k−1∑

l=1

(−1)l−1

(
k

l

)
A

(k)
j (n + k − l) +

[
1 + (−1)k−1

]
A

(k)
j (n) , n ≥ 1. (4)

In this note we want to give another derivation of (2), based also on recursion relations. In
our case, in contrast to (4), our recursions are a system of relations satisfied simultaneously

by all the A
(k)
j ’s. Namely





A
(k)
0 (n) = A

(k)
0 (n− 1) + A

(k)
1 (n− 1) ,

A
(k)
1 (n) = A

(k)
1 (n− 1) + A

(k)
2 (n− 1) ,

. . . . . . . . . . . . . . . . . . . . . . .

A
(k)
k−2 (n) = A

(k)
k−2 (n− 1) + A

(k)
k−1 (n− 1) ,

A
(k)
k−1 (n) = A

(k)
k−1 (n− 1) + A

(k)
0 (n− 1) , n ≥ 2,

. (5)
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with the initial conditions

A
(k)
0 (1) = 1, A

(k)
1 (1) = A

(k)
2 (1) = · · · = A

(k)
k−2 (1) = 0, A

(k)
k−1 (1) = 1. (6)

The validity of (5) follows from Pascal’s formula
(

n

p

)
=

(
n− 1

p

)
+

(
n− 1

p− 1

)

in its extended form for n ≥ 2 and p any integer, with the understanding that

(
m

q

)
= 0 if

q > m ≥ 1, while

(
m

q

)
= 0 for q < 0 and m ≥ 1.

In the next section we will prove Ramus’ identity as a consequence of (5) and (6). Finally,
in the last section of the paper, we will show how the recursions (5) lead to Konvalina and
Liu’s recursion (4).

2. Proof of Ramus’ Identity

To obtain identity (2) from the system (5) and the conditions (6), we first attempt, in
accordance with the theory of difference equations [3], to find solutions of the system in the
form

A
(k)
j (n) = vjλ

n, j = 0, 1, . . . , k − 1, (7)

for appropriate λ’s and vj’s. Inserting (7) into (5), we find that
{

vjλ
n = vjλ

n−1 + vj+1λ
n−1, j = 0, 1, . . . , k − 2,

and vk−1λ
n = vk−1λ

n−1 + v0λ
n−1;

which will surely be satisfied if{
vjλ = vj + vj+1, j = 0, 1, . . . , k − 2,

and vk−1λ = vk−1 + v0.
(8)

In matrix form the latter conditions assert that

λ




v0

v1

v2

·
vk−1




=




1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 · · · 0
· · · · · · · ·
1 0 0 0 · · · 1







v0

v1

v2

·
vk−1




.

(9)

In other words λ has to be an eigenvalue of the matrix on the right, with v0, v1, v2, . . . , vk−1

being the components of an eigenvector corresponding to this eigenvalue.
Now the eigenvalues λ are the zeros of the k × k determinant

D (λ) =

∣∣∣∣∣∣∣∣∣∣

1− λ 1 0 0 · · · 0
0 1− λ 1 0 · · · 0
0 0 1− λ 1 · · · 0
· · · · · · · ·
1 0 0 0 · · · 1− λ

∣∣∣∣∣∣∣∣∣∣ .

(10)

Expanding, according to the first column, we find that

D (λ) = (1− λ)k + (−1)k−1 . (11)
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Thus for λ to be a root of the determinant (10), λ − 1 will have to be a kth root of unity.
Hence, the roots λp, p = 0, 1, . . . , k − 1, of (10) are given by

λp = 1 + ωp, where ωp = eip2π/k, p = 0, 1, . . . , k − 1. (12)

Knowing what the eigenvalues of the matrix on the right of (9) are, one can determine
the components vj of the corresponding eigenvectors in accordance with the conditions (8).
With λ = λp = 1 + ωp, these conditions read

{
(1 + ωp) vj = vj + vj+1, j = 0, 1, . . . , k − 2,

and (1 + ωp) vk−1 = vk−1 + v0.

The first k − 1 conditions lead to vj+1 = ωpvj, j = 0, 1, . . . , k − 2, so that vj = ωj
pv0,

j = 0, 1, . . . , k − 2. The remaining condition leads to vk−1 = ω−1
p v0 = ωk−1

p v0. Thus, in all
cases, the components vj of the eigenvector corresponding to the eigenvalue λp = 1 + ωp are
given by

vj = ωj
pv0, j = 0, 1, . . . , k − 1, (13)

where v0 can be chosen arbitrarily.
If we now form the expressions

Aj (n) = vjλ
n = cpω

j
p (1 + ωp)

n , j = 0, 1, . . . , k − 1, n ≥ 1,

where the arbitrary constant cp represents v0 in (13), it then follows from the preceding

calculations that these Aj (n)’s are solutions of the same system (5) that the A
(k)
j (n)’s

satisfy. Superposing, the same is true of the expressions

Aj (n) =
k−1∑
p=0

cpω
j
p (1 + ωp)

n , j = 0, 1, . . . , k − 1, n ≥ 1. (14)

In view of the uniqueness of the solution of the system of recursion relations (5) satisfying

the initial conditions (6), to prove that the A
(k)
j (n)’s are given by the formula (2), it will be

sufficient to show that by choosing the cp’s in (14) all equal to 1/k, the resulting expressions
satisfy the initial conditions (6). In other words we need to show that

1

k

k−1∑
p=0

ωj
p (1 + ωp) =

1

k

k−1∑
p=0

(
ωj

p + ωj+1
p

)
=

{
0 if j = 1, 2, . . . , k − 2
1 if j = 0 or j = k − 1;

and this follows immediately by noting that

k−1∑
p=0

ωl
p =

k−1∑
p=0

ωp
l =

(
1− ωk

l

)
/ (1− ωl) = 0 for l = 1, 2, . . . . , k − 1,

while as ωl
p = 1 if l = 0 or l = k,

k−1∑
p=0

ωl
p = k if l = 0 or l = k.
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3. Konvalina and Liu’s Recursion Relation

Here we want to indicate how the recursion relation (4) can be derived from our approach.
To this end we introduce the operator E which sends the nth term B (n) of a sequence into
the (n + 1)st term B (n + 1); the νth iterant of E, Eν , then sends B (n) into B (n + ν), which
we write as

EνB (n) = B (n + ν) .

Next, given a polynomial P (x) =
∑q

ν=0 aνx
ν , we define the corresponding operator P (E) =∑q

ν=0 aνE
ν in the obvious way as

P (E) B (n) =

q∑
ν=0

aνE
νB (n) =

q∑
ν=0

aνB (n + ν) .

Using this notation the recursion relations (5) can be written as{
(1− E) A

(k)
j (n) + A

(k)
j+1 (n) = 0 j = 0, 1, . . . , k − 2,

and (1− E) A
(k)
k−1 (n) + A

(k)
0 (n) = 0, n ≥ 1.

Viewing this as a k×k system of linear equations in the unknowns A
(k)
j (n), j = 0, 1, . . . , k−

1, with operator coefficients, Cramer’s rule, suitably interpreted [3, p. 112], is applicable;

applying it, it follows that each A
(k)
j (n), satisfies the recursion relation D (E) A

(k)
j (n) = 0,

for n ≥ 1, where

D (E) =

∣∣∣∣∣∣∣∣∣∣

1− E 1 0 0 · · · 0
0 1− E 1 0 · · · 0
0 0 1− E 1 · · · 0
...

...
...

... · · · ...
1 0 0 0 · · · 1− E

∣∣∣∣∣∣∣∣∣∣ .

Clearly this determinant is the same as the determinant D (λ) on the right of (10) with λ

replaced by E. In (11) we found D (λ) = (1− λ)k + (−1)k−1. Hence, each A
(k)
j (n) satisfies

[
(1− E)k + (−1)k−1

]
A

(k)
j (n) = 0, n ≥ 1.

Expanding, this is equivalent to

A
(k)
j (n + k) =

k−1∑

l=1

(−1)l−1

(
k

l

)
A

(k)
j (n + k − l) +

[
1 + (−1)k−1

]
A

(k)
j (n) , n ≥ 1,

precisely the recursion relation (4) of Konvalina and Liu.
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