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Abstract. In this note we show that Hofstadter’s married functions generated by the
intertwined system of recurrences a(0) = 1, b(0) = 0, b(n) = n − a(b(n − 1)), a(n) =
n − b(a(n − 1)) has the solutions a(n) = b(n + 1)φ−1c + ε1(n) and b(n) = b(n + 1)φ−1c −
ε2(n), where φ is the golden ratio and ε1, ε2 are indicator functions of Fibonacci numbers
diminished by 1.

1. Introduction

In his well–known book “Gödel, Escher, Bach: An Eternal Golden Braid,” D. R. Hof-
stadter [9] introduces several recurrences which give rise to particularly intriguing integer
sequences. Mention, for instance, the famous Hofstadter’s Q–sequence (also known as Meta-
Fibonacci sequence [6], entry A005185 in Sloane’s Encyclopedia [13]) which is defined by
Q(1) = Q(2) = 1 and

Q(n) = Q(n−Q(n− 1)) + Q(n−Q(n− 2)) for n > 2. (1.1)

Each term of the sequence is the sum of two preceding terms but, in contrast to the Fibonacci
sequence, not necessarily the two last terms. The sequence Q(n) shows an erratic behavior
as well as a certain degree of regularity (see [12]). Another link to the sequence of Fibonacci
numbers (Fk)k≥1 = 1, 1, 2, 3, 5, 8, 13 . . . is given in Hofstadter’s G–sequence (A005206), which
is generated by G(0) = 0 and

G(n) = n−G(G(n− 1)) for n > 0. (1.2)

It has been shown [11] that if n = Fr(1) + Fr(2) + · · · + Fr(m) is the Zeckendorf expansion
of n, then G(n) = Fr(1)−1 + Fr(2)−1 + · · ·+ Fr(m)−1. Furthermore, Downey/Griswold [1] and
Granville/Rasson [3] proved an explicit formula for G(n), namely,

G(n) = b(n + 1)µc, (1.3)

where µ = (
√

5−1)/2 = φ−1 and φ = (
√

5+1)/2 is the golden ratio. Various generalizations
of (1.2) have been investigated in [1, 10].

In this note we are concerned with Hofstadter’s “married functions” (or Hofstadter’s male–
female sequences [14]) defined by two intertwined functions a(n) and b(n) (see p.137 of [9]).

Definition 1.1. Denote by a(n) and b(n) the sequences defined by a(0) = 1, b(0) = 0 and
for n > 0 by the intertwined system of recurrences{

b(n) = n− a(b(n− 1)),

a(n) = n− b(a(n− 1)).
(1.4)

The first one hundred terms of the “female” sequence a(n) (A005378) and, respectively,
of the “male” sequence b(n) (A005379) are given in Table 1.
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Table 1. Values of a(n), b(n) for 0 ≤ n ≤ 99

n a(n) b(n) n a(n) b(n) n a(n) b(n) n a(n) b(n)
0 1 0 25 16 16 50 31 31 75 46 46
1 1 0 26 16 16 51 32 32 76 47 47
2 2 1 27 17 17 52 32 32 77 48 48
3 2 2 28 17 17 53 33 33 78 48 48
4 3 2 29 18 18 54 34 33 79 49 49
5 3 3 30 19 19 55 34 34 80 50 50
6 4 4 31 19 19 56 35 35 81 50 50
7 5 4 32 20 20 57 35 35 82 51 51
8 5 5 33 21 20 58 36 36 83 51 51
9 6 6 34 21 21 59 37 37 84 52 52

10 6 6 35 22 22 60 37 37 85 53 53
11 7 7 36 22 22 61 38 38 86 53 53
12 8 7 37 23 23 62 38 38 87 54 54
13 8 8 38 24 24 63 39 39 88 55 54
14 9 9 39 24 24 64 40 40 89 55 55
15 9 9 40 25 25 65 40 40 90 56 56
16 10 10 41 25 25 66 41 41 91 56 56
17 11 11 42 26 26 67 42 42 92 57 57
18 11 11 43 27 27 68 42 42 93 58 58
19 12 12 44 27 27 69 43 43 94 58 58
20 13 12 45 28 28 70 43 43 95 59 59
21 13 13 46 29 29 71 44 44 96 59 59
22 14 14 47 29 29 72 45 45 97 60 60
23 14 14 48 30 30 73 45 45 98 61 61
24 15 15 49 30 30 74 46 46 99 61 61

A simple inductive argument shows that 0 < a(n) ≤ n+1 and 0 ≤ b(n) ≤ n, thus ensuring
that both sequences are well-defined for all n ≥ 0 by the recursion (1.4). J. Grytczuk [4, 5]
provided a general framework for the recursions (1.2) and (1.4), namely by linking them to
Richelieu cryptosystems and symbolic dynamics on infinite words. We here prove explicit
formulas for a(n) and b(n) which, somehow as a surprise, involve both the quantity µ from
formula (1.3) and the explicit notion of Fibonacci numbers Fk.

Our main result is the following theorem.

Theorem 1.2. For all n ≥ 0 there hold

a(n) = b(n + 1)µc+ ε1(n),

b(n) = b(n + 1)µc − ε2(n),

where for k ≥ 1,

ε1(n) =

{
1, if n = F2k − 1;

0, else.
ε2(n) =

{
1, if n = F2k+1 − 1;

0, else.
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2. Proof

The proof of Theorem 1.2 involves an inductive argument, where several cases have to
be taken into account. We begin with two lemmas which link the floor expression of the
statement (a so-called Beatty sequence) with the Fibonacci numbers.

Lemma 2.1. Let n ≥ 4. Then

(1) bnµc = F2k − 1 ⇔ n = F2k+1 − 1.
(2) bnµc = F2k−1 − 1 ⇔ n = F2k − 1 or n = F2k.
(3) bnµc = F2k ⇔ n = F2k+1 or n = F2k+1 + 1.
(4) bnµc = F2k−1 ⇔ n = F2k + 1.

Proof. The golden ratio φ = 1.6180339 . . . has the simple continued fraction expansion
[1, 1, 1, . . .]. Thus, for any k ≥ 2, the quotient

Fk

Fk−1

= 1 +
1

Fk−1

Fk−2

= · · · =
[
1, 1, . . . ,

F2

F1

]
= [1, 1, 1, . . . , 1]

is just the (k − 1)th convergent of φ. Consequently, general theory of continued fractions
(e.g., see Theorem 163 and Theorem 171 in [8]) yields

φ− Fk

Fk−1

=
(−1)k

Fk−1(φFk−1 + Fk−2)
.

Since φFk−1 + Fk−2 ≤ (φ + 1)Fk−1 < 3Fk−1 and φFk−1 + Fk−2 > Fk−1, we have the estimates

1

3F 2
2k−1

< φ− F2k

F2k−1

<
1

F 2
2k−1

and (2.1)

1

3F 2
2k

<
F2k+1

F2k

− φ <
1

F 2
2k

. (2.2)

First, consider case (1). Obviously, the left hand equation is equivalent to F2k− 1 ≤ nφ−1 <
F2k for k ≥ 2, which again can be rewritten as

0 < φF2k − n ≤ φ. (2.3)

We have to prove that this inequality holds if and only if n = F2k+1 − 1. Instead of directly
proving (1), we show the inequality

φ− 1 < φF2k − (F2k+1 − 1) ≤ 1, (2.4)

which implies (1). Namely, since 0 < φ − 1 and 1 < φ and (2.3), this shows the “⇐”
part of (1). On the other hand, the bounds in (2.3) ensure that φF2k − F2k+1 ≤ 0 and
φF2k − (F2k+1 − 2) > φ, so that by linearity there are no other values of n satisfying (2.3).
This give the “⇒” part of (1). Now, as for the proof of (2.4), we see that by (2.2),

φ− 1 < 1− 1

F2k

< 1 + F2k

(
φ− F2k+1

F2k

)
< 1− 1

3F2k

< 1,

where the first and last inequality holds by trivial means and the middle term corresponds
to the middle term in (2.4). This finishes the proof of (1).

Similarly, in case (2) we have

0 < φF2k−1 − n ≤ φ (2.5)
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for k ≥ 3 and it is sufficient to show that 0 < φF2k−1−F2k ≤ φ−1, since then only n = F2k−1
and n = F2k can satisfy (2.5). Here, (2.1) yields

0 <
1

3F2k−1

< F2k−1

(
φ− F2k

F2k−1

)
<

1

F2k−1

< φ− 1,

which gives the equivalence in case (2).
For case (3) it suffices to ensure that 0 ≤ F2k+1 − φF2k < φ − 1 for k ≥ 2, which holds

true due to

0 <
1

3F2k

< F2k

(
F2k+1

F2k

− φ

)
<

1

F2k

< φ− 1.

Finally, in case (4) the condition φ− 1 ≤ F2k + 1− φF2k−1 < 1 is guaranteed for k ≥ 3 by

φ− 1 < 1− 1

F2k−1

< 1 + F2k−1

(
F2k

F2k−1

− φ

)
< 1− 1

3F2k−1

< 1

and by directly checking (4) for k = 2. ¤
In order to get our inductive argument to work later, we apply Lemma 2.1 to evaluate the

indicator functions ε1, ε2 at bnµc. Obviously, by definition,

ε1(0) = ε2(1) = 1, ε1(1) = ε2(0) = 0. (2.6)

Moreover, it is clear from Lemma 2.1, cases (1) and (2), that for all n ≥ 0 there hold

ε1(bnµc) =

{
1, if n = F2k+1 − 1;

0, else.
(2.7)

ε2(bnµc) =

{
1, if n = F2k − 1 or n = F2k;

0, else.
(2.8)

Our second lemma concerns nested Beatty sequences of type bµbµnc + Cc and will be
useful to get rid of subsequent floors at specified points in the induction step.

Lemma 2.2.

(1) For all n ≥ 0 holds bµn + µc = n− bµbµnc+ µc.
(2) For n = F2k with k ≥ 2 holds bµn + µc = n− bµbµnc+ 2µc.
(3) For n = F2k+1 with k ≥ 2 holds bµn + µc = n− bµbµncc − 1.

Proof. Equation (1) is Lemma 1 in [1]. We proceed with the proof of (2) and (3). First, let
k ≥ 3. Concerning statement (2), we observe with help of Lemma 2.1 (cases (2), (3), (4)
therein), that

F2k − bµbµF2kc+ 2µc = F2k − bµ(F2k−1 + 1)c
= F2k − F2k−2 = F2k−1 = bµ(F2k + 1)c.

Similarly, for statement (3) we use Lemma 2.1 (cases (3), (2), (3), respectively) and obtain

F2k+1 − bµbµF2k+1cc − 1 = F2k+1 − bµF2kc − 1

= F2k+1 − (F2k−1 − 1)− 1

= F2k = bµ(F2k+1 + 1)c.
The case k = 2 is easily checked by hand. ¤
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We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. To begin with, we observe that the formulas given in Theorem 1.2 are
true if n ∈ {0, 1, 2} (e.g., compare with Table 1). Suppose now n ≥ 3. According to (1.4)
we have to show that

b(n + 1)µc − ε2(n) = n− bµ (bnµc − ε2(n− 1) + 1)c (2.9)

− ε1 (bnµc − ε2(n− 1)) ,

and

b(n + 1)µc+ ε1(n) = n− bµ (bnµc+ ε1(n− 1) + 1)c (2.10)

+ ε2 (bnµc+ ε1(n− 1)) .

We distinguish several cases on n.
First, if n 6= F2k, F2k − 1, F2k+1, F2k+1 − 1 then by definition of the indicator functions,

ε1(n) = ε1(n− 1) = ε2(n) = ε2(n− 1) = 0.

Furthermore, by (2.7) and (2.8),

ε1(bnµc) = ε2(bnµc) = 0.

Then, the equalities (2.9) and (2.10) hold by (1) of Lemma 2.2.
If n = F2k+1 − 1, then

ε1(n) = ε1(n− 1) = ε2(n− 1) = ε2(bnµc) = 0 and

ε2(n) = ε1(bnµc) = 1

and again (1) from Lemma 2.2 yields (2.9) and (2.10). In the same style, for n = F2k − 1 we
have

ε1(n) = ε2(bnµc) = 1 and

ε1(n− 1) = ε2(n) = ε2(n− 1) = ε1(bnµc) = 0

and (2.9), (2.10) by (1) from Lemma 2.2. Moreover, for n = F2k we have

ε2(n) = ε2(n− 1) = ε1(bnµc) = 0

and (2.9) again by (1). On the other hand, for n = F2k+1 it follows

ε1(n) = ε1(n− 1) = ε2(bnµc) = 0

and (2.10).
It remains to prove (2.9) for n = F2k+1 and (2.10) for n = F2k. For suppose n = F2k+1,

then ε2(n) = 0 and

ε2(n− 1) = ε1(bnµc − 1) = 1.

Now, statement (3) of Lemma 2.2 gives equation (2.9). Finally, if n = F2k then ε1(n) =
ε2(bnµc + 1) = 0 and ε1(n − 1) = 1, and (2.10) corresponds to (2) of Lemma 2.2. This
finishes the proof of Theorem 1.2. ¤
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3. Epilogue

It would be interesting to know whether there exist explicit formulas for (what we may call)
Hofstadter’s parents-child sequences a(n), b(n) and c(n) defined by a(0) = 1, b(0) = c(0) = 0
and 




b(n) = n− c(b(n− 1)),

a(n) = n− b(a(n− 1)),

c(n) = n− a(c(n− 1)) for n > 0.

(3.1)

Consider, for instance, the “mother” sequence

a(n) = 1, 0, 2, 1, 3, 3, 4, 4, 5, 7, 7, 8, 7, 10, 8, 10, . . . .

We are surprised by the fact that a(n) = b(n + 1)µc for 4 ≤ n ≤ 8, 30 ≤ n ≤ 40, 140 ≤ n ≤
176, 606 ≤ n ≤ 752 etc., while on all other intervals irregular oscillations can be observed.
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