
ON HIGHER ORDER LUCAS-BERNOULLI NUMBERS

KYLE KEEPERS AND PAUL THOMAS YOUNG

Abstract. In this note we consider higher order Bernoulli numbers associated to the formal
group laws whose canonical invariant differentials generate the Lucas sequences {Un}. We
first give an explicit formula for these numbers which implies new identities involving the
usual higher order Bernoulli numbers and the Lucas sequences {Un} and {Vn}. We then
give an analogue of the Kummer congruences for these sequences which for each prime p
depends only on Up.

1. Introduction

Let P and Q be integers and consider a Lucas sequence {Un} defined by

Un = PUn−1 −QUn−2 (n > 1), U0 = 0, U1 = 1. (1.1)

Define a power series λ ∈ Q[[t]] by

λ(t) =
∞∑

n=1

Un
tn

n
. (1.2)

Let ε denote the formal compositional inverse of λ in Q[[t]], and define the Lucas-Bernoulli

numbers B̂
(w)
n of order w by the generating function

(
t

ε(t)

)w

=
∞∑

n=0

B̂(w)
n

tn

n!
. (1.3)

If one takes P = −1 and Q = 0 then Un = (−1)n+1 for n > 0, λ(t) = log(1+ t), ε(t) = et−1,

and the numbers B̂
(w)
n are the (usual) Bernoulli numbers of order w, denoted simply by

B
(w)
n . The first part of this note centers around an explicit formula for the numbers B̂

(w)
n

in terms of B
(w)
n . This formula implies new identities among the sequences B

(w)
n , Un, and

the companion sequence Vn. In the second part, we prove an analogue of the Kummer

congruences for the sequences B̂
(w)
n . This is an extension of congruences which were proved

in the case P = −1, Q = 0 in [4] and in the case w = 1 in [5].
The power series λ in (1.2) is the formal logarithm of a rational formal group law over

Z (cf. [5], Section 5). In general if one takes λ to be the logarithm of an arbitrary formal

group law in characteristic zero then the numbers B̂
(w)
n defined by (1.3) are the wth order

Bernoulli numbers associated to that formal group law according to the definition in [3]. The

Kummer congruences we present in Section 3 for B̂
(w)
n depend on the same special element

Up as do those proved in ([5], Theorem 3.2) for B̂
(1)
n and have the same modulus as those

proved in ([4], Theorem 5.4) for the numbers B̂
(w)
n = B

(w)
n obtained in (1.3) from the choice

P = −1, Q = 0; in this case the associated formal group law is the multiplicative group law
F (X,Y ) = X + Y + XY . As discussed in ([5], Section 5) in the case w = 1, we interpret
the strength of our congruences in Section 3 as an expression of the fact that the associated
formal group laws are defined over Z, rather than just over Q.
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2. Identities for Higher Order Lucas-Bernoulli Numbers

Given integers P and Q we define the Lucas sequence {Un} as in (1.1) and its companion
sequence {Vn} by

Vn = PVn−1 −QVn−2 (n > 1), V0 = 2, V1 = P. (2.1)

Then r(t) = 1− Pt + Qt2 is the characteristic polynomial of the recurrence for either {Un}
or {Vn}, with discriminant D = P 2 − 4Q. If r(t) factors as r(t) = (1 − αt)(1 − βt) then

α = (P +
√

D)/2 and β = (P −√D)/2, so that α− β =
√

D, and for all n we have

Vn = αn + βn, Un =
1√
D

(αn − βn), (2.2)

unless D = 0, in which case Un = nαn−1. It follows from (2.2) that

αn =
Vn + Un

√
D

2
(2.3)

for all n. For any given Lucas sequence {Un} as in (1.1) we define the numbers B̂
(w)
n for

n ≥ 0 by (1.3), and we define B̂
(w)
n = 0 for n < 0.

Theorem 1. Let B̂
(w)
n denote the numbers defined in (1.3). Then for all m ≥ 0,

B̂
(w)
m

m!
=

m∑

k=0

(
w

k

)
αk
√

D
m−k B

(w−k)
m−k

(m− k)!
.

If D = 0 this reduces to

B̂
(w)
m

m!
=

(
w

m

)
αm.

Proof. From ([5], equation (3.4)) we have

t

ε(t)
= αt +

√
Dt

e
√

Dt − 1
(2.4)

so that (
t

ε(t)

)w

=
∞∑

k=0

(
w

k

)
(αt)k

( √
Dt

e
√

Dt − 1

)w−k

. (2.5)

The P = −1, Q = 0 case of (1.3) reads
(

t

et − 1

)w

=
∞∑

n=0

B(w)
n

tn

n!
, (2.6)

so from (1.3) and (2.5) we obtain
∞∑

m=0

B̂(w)
m

tm

m!
=

∞∑

k=0

(
w

k

)
(αt)k

∞∑
s=0

B(w−k)
s

(
√

Dt)s

s!
(2.7)

and equating coefficients of tm gives the statement of the theorem; the summation runs from

k = 0 to m since B
(w−k)
m−k = 0 in the case k > m. In the case D = 0 (2.4) becomes

t

ε(t)
= αt + 1 (2.8)

FEBRUARY 2008/2009 27



THE FIBONACCI QUARTERLY

and therefore (2.7) becomes
∞∑

m=0

B̂(w)
m

tm

m!
=

∞∑

k=0

(
w

k

)
(αt)k, (2.9)

so that B̂
(w)
m /m! =

(
w
m

)
αm when D = 0, completing the proof. ¤

We define

λ(k) =

{
Vk, if k is even,

Uk, if k is odd,
η(k) =

{
Uk, if k is even,

Vk, if k is odd,
(2.10)

and restate Theorem 1 as follows.

Corollary. Let B̂
(w)
n denote the numbers defined in (1.3). If D 6= 0, then for all m ≥ 0,

B̂
(w)
m

m!
=

1

2
Dm/2

m∑

k=0

(
w

k

)
λ(k)D−[k/2] B

(w−k)
m−k

(m− k)!

+
1

2
D(m+1)/2

m∑

k=0

(
w

k

)
η(k)D−[(k+1)/2] B

(w−k)
m−k

(m− k)!
.

Proof. Substitute (2.3) into Theorem 1 to obtain

B̂
(w)
m

m!
=

m∑

k=0

(
w

k

) (
Vk

√
D

m−k
+ Uk

√
D

m+1−k

2

)
B

(w−k)
m−k

(m− k)!
. (2.11)

Collecting the terms in (2.11) whose power of
√

D has the same parity as m, and those of
opposite parity, gives the statement of the corollary. ¤

Remarks. In this theorem and corollary the order w may be taken to lie in any commutative
ring with unity. However, if w is taken to be a rational number then each sum in this corollary
consists of rational terms. If in addition P , Q are chosen so that the discriminant D is not

a square we may then obtain identities for these sums by virtue of the fact that B̂
(w)
m is

rational. In particular, if m is even then
m∑

k=0

(
w

k

)
η(k)D−[(k+1)/2] B

(w−k)
m−k

(m− k)!
= 0 (2.12)

and
B̂

(w)
m

m!
=

1

2
Dm/2

m∑

k=0

(
w

k

)
λ(k)D−[k/2] B

(w−k)
m−k

(m− k)!
. (2.13)

Conversely if m is odd then
m∑

k=0

(
w

k

)
λ(k)D−[k/2] B

(w−k)
m−k

(m− k)!
= 0 (2.14)

and
B̂

(w)
m

m!
=

1

2
D(m+1)/2

m∑

k=0

(
w

k

)
η(k)D−[(k+1)/2] B

(w−k)
m−k

(m− k)!
. (2.15)
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The identities (2.12) and (2.14) seem to be new identities for the usual higher order Bernoulli
numbers.

3. Congruences for Higher Order Lucas-Bernoulli Numbers

For the remainder of this paper we regard the order w as a positive integer. Let p denote
an odd prime, Zp the ring of p-adic integers, Qp the field of p-adic numbers, and Z(p) the
ring of rational numbers with denominator relatively prime to p, so that Z(p) = Zp

⋂
Q. We

denote by “ord” the additive valuation on Qp defined so that ord x = k if p−kx is a unit in
Zp. The Pochhammer symbol (or rising factorial) is defined by (m+1)w = (m+w)!/m!. For
a sequence {am} and a nonnegative integer c, we define the action of the forward difference
operator ∆c with increment c by

∆c am = am+c − am. (3.1)

The powers ∆k
c of ∆c are defined by ∆0

c = identity and ∆k
c = ∆c ◦∆k−1

c for positive integers
k, so that

∆k
c am =

k∑
j=0

(
k

j

)
(−1)k−jam+jc (3.2)

for all nonnegative integers k. We will have need of the identity

∆k
c{XmYm} =

k∑
i=0

(
k

i

)
∆i

c{Xm}∆k−i
c {Ym+ic}, (3.3)

which was observed in ([4], equation (5.38)).
As in Section 5 of [4], for a given nonnegative integer m and a positive integer w we define

J = J(m,w) = {j ∈ {1, 2, ..., w} : p− 1 |m + j}; (3.4)

M = M(m,w) = max
j∈J

{1 + ord (m + j)}; (3.5)

E = E(m, w) =
∑

j∈J∪{w}
k(j, m,w), (3.6)

where k(j,m, w) =





max{1 + ord (m + j)− ord j, 0}, if j ∈ J and j 6= w,

1 + ord (m + j)− ord j, if j = w ∈ J ,

−ord j, if j = w 6∈ J .

(3.7)

By definition we set M = 0 if J is empty. We recall that if 0 ≤ m ≤ n and m ≡ n
(mod (p−1)pa) for some a ≥ M , then E(m,w) = E(n,w). In ([4], Theorem 5.1) we observe
that

ord
B

(w)
m+w

(m + 1)w

≥ −E. (3.8)

We also observe from equations (5.6) and (5.16) of [4] that

E(m,w) ≥ E(m,w − s)− ord

(
w

s

)
(3.9)

for 0 ≤ s ≤ w.
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Theorem 2. Let B̂
(w)
n denote the numbers defined in (1.3). Then if p is an odd prime and

c = l(p− 1) where pa divides l for some a ≥ M , then for all m,w, k ≥ 0, the congruence

k∑
j=0

(−1)k−j

(
k

j

)
U (k−j)l

p

B̂
(w)
m+w+jc

(m + jc + 1)w

≡ 0 (mod pCZ(p))

holds, where C = min{m− E, k(a + 1−M)− E}.
Proof. Begin by replacing m with m + w in Theorem 1 and multiplying both sides by m! to
obtain

B̂
(w)
m+w

(m + 1)w

=
w∑

s=0

(
w

s

)
αs
√

D
m+w−s B

(w−s)
m+w−s

(m + 1)w−s

. (3.10)

Taking c = l(p − 1) as described, the left side of the congruence of the theorem may be
expressed via (3.10) as

k∑
j=0

(−1)k−j

(
k

j

)
U (k−j)l

p

B̂
(w)
m+w+jc

(m + jc + 1)w

(3.11)

=
w∑

s=0

(
w

s

)
αs
√

D
w−s

k∑
j=0

(−1)k−j

(
k

j

)
U (k−j)l

p

√
D

m+jc B
(w−s)
m+w−s+jc

(m + jc + 1)w−s

.

Suppose first that p divides D; then p also divides Up by ([5], equation (2.4)). The p-adic
ordinal of the term indexed by s and j in the sum (3.11) is therefore at least

ord

(
w

s

)
+

m + jc + w − s

2
+ (k − j)l − E(m,w − s) (3.12)

since E(m + jc, w − s) = E(m,w − s) for all j. Since c = l(p− 1) with l ≥ pa ≥ a + 1 this
ordinal is at least

ord

(
w

s

)
+ kl +

jl(p− 3)

2
+

m + w − s

2
− E(m,w − s)

≥ k(a + 1)− E(m,w) ≥ C (3.13)

which proves the theorem in the case where p divides D.
Now suppose that p does not divide D. We use (3.2) and (3.3) to rewrite the sum in (3.11)

as

w∑
s=0

(
w

s

)
αs
√

D
w−s

U
kl+ m

p−1
p

k∑
j=0

(−1)k−j

(
k

j

)(
U
− 1

p−1
p

√
D

)m+jc B
(w−s)
m+w−s+jc

(m + jc + 1)w−s

=
w∑

s=0

(
w

s

)
αs
√

D
w−s

U
kl+ m

p−1
p ∆k

c

{(
U
− 1

p−1
p

√
D

)m
B

(w−s)
m+w−s

(m + 1)w−s

}
(3.14)

=
w∑

s=0

(
w

s

)
αs
√

D
w−s

U
kl+ m

p−1
p

k∑
i=0

(
k

i

)
∆i

c

{
B

(w−s)
m+w−s

(m + 1)w−s

}
∆k−i

c

{(
U
− 1

p−1
p

√
D

)m+ic
}

.
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As in ([5], equation (3.8)) we have

Ukl+m/(p−1)
p ∆k−i

c

{(
U−1/(p−1)

p

√
D

)m+ic
}

=
√

D
m+ic

U (k−i)l
p

((
D(p−1)/2

Up

)l

− 1

)k−i

. (3.15)

Since D(p−1)/2 ≡ Up (mod p) by ([5], equation (2.4)), we have (D(p−1)/2/Up)
l ≡ 1 (mod

p(a+1)Z(p)), and therefore (3.15) is zero modulo p(k−i)(a+1)Z(p). By ([4], Theorem 5.4), we also
have

∆i
c

{
B

(w−s)
m+w−s

(m + 1)w−s

}
≡ 0 (mod pCiZp) (3.16)

where Ci = min{m− E(m,w − s), i(a + 1−M(m,w − s))− E(m,w − s)}. Therefore,
(

w

s

)
∆i

c

{
B

(w−s)
m+w−s

(m + 1)w−s

}
≡ 0 (mod pC′iZp) (3.17)

where C ′
i = min{m−E(m,w), i(a + 1−M(m,w))−E(m,w)}. It follows that each term in

the last sum of (3.14) is zero modulo pCZp with C as in the statement of the theorem. This
completes the proof. ¤

References

[1] A. Adelberg, Universal Higher Order Bernoulli Numbers and Kummer and Related Congruences, J.
Number Theory, 84 (2000), 119–135.

[2] A. Adelberg, Universal Kummer Congruences Mod Prime Powers, J. Number Theory, 109 (2004), 362–
378.

[3] P. Tempesta, On a Generalization of Bernoulli and Euler Polynomials, eprint arXiv: math/0601675
(2006), 28pp.

[4] P. T. Young, Congruences for Bernoulli, Euler, and Stirling Numbers, J. Number Theory, 78 (1999),
204–227.

[5] P. T. Young, On Lucas-Bernoulli Numbers, The Fibonacci Quarterly, 44.4 (2006), 347–357.

MSC2000: 11B68, 11B39

Utah State University, Logan, Utah 84322-0500
E-mail address: kyle.keepers@aggiemail.usu.edu

Department of Mathematics, College of Charleston, Charleston, SC 29424
E-mail address: paul@math.cofc.edu

FEBRUARY 2008/2009 31


