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ABSTRACT. In this note, we give a short proof of the fact that the coefficients of the poly-
nomial

Ap(a) = (L= 2)(1 —2®)(1 = 2®) - (1 —af) (1 - af)
are all equal to —1,0 or 1, where F), is the nth Fibonacci number. This improves the
previous result that the coefficients of [], <, (1 — .’L‘F") are all equal to —1,0 or 1.

Consider the infinite product
A)=J] (@ -2") =1 -2)(1 —2”)(1 —2*)(1 - 2°)(1 - 2¥) - -
n>2
2t T B gl 12 13 a8

regarded as a formal power series, where F), is the nth Fibonacci number. There is a very
simple combinatorial interpretation of the coefficients of A(x), namely, the coefficient of ™
is rg(m) — ro(m), where rg(m) (respectively ro(m)) is the number of ways to write m as a
sum of an even (respectively odd) number of distinct positive Fibonacci numbers. Robbins
2] showed that the coefficients of A(z) are all equal to —1,0 or 1, and Ardila [1] gave a
simple recursive description of the coefficients of A(x).

In this note, we give a short proof of a somewhat stronger result. Namely, we show that
any partial product of A(x), considered as a polynomial, also has coefficients —1,0, 1.

Proposition 1. Let n be a positive integer. The coefficients of the polynomial
An(a) = (1= ) (1 = )1 = 2%) - (1= (1 = aoo)
are all equal to —1,0 or 1.

For instance, the first few partial products are
Aj(z)=1—x

—l—az—a? 4ot +2" -8+t — 212 — 2P p T 1 !0

=l—ao—a?+at 42" —a® 4™ — 2 2B M 18— gt

20 20 24 095 4 028 030 31, 32
Combinatorially, this is equivalent to saying that if we are only allowed to use distinct parts
taken from the set {Fy, F3, ..., F,,}, then the number of partitions of m into an odd number
of parts differs by, at most, one from the number of partitions of m into an even number of
parts.
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Note that Proposition 1 implies the result that the coefficients of A(z) are —1,0 and 1,
since the terms of A, (z) agree with A(z) until at least up to the term xf»+1=1. Thus, by
choosing n arbitrarily large, our result implies the result about A(z).

Proof of Proposition 1. We say that a polynomial is timid if each of its coefficients is
—1,0 or 1. Let us construct the auxiliary polynomials
Bu(@) = (1—2)(1 = a?)(1 — %)+ (1 — aF")(1 — aFet — P,
and Cu(z)=(1—2)1 -2 —2%) - (1 — ") (1 4 25 — ),
In the n = 1 case, we define By(x) =1 — 2 + 25 and C)(z) = 1 + 2™ — 2. We will show
by induction that the polynomials A,,, B, C,, are all timid for all positive integer n.
We can check the base cases (n = 1,2) manually. Now suppose that we know that

Ay, By, Cy, are all timid for all £ < n. We want to prove that A, B,,, C,, are all timid as well.
First, we show that A, is timid. We have

An(2) = Ap-s(2)(1 = 2™7) (1 = 2™)(1 — a")

— An_3< )(1 — 7 n 1 _ an _ an+l + anfl“l‘Fn _|_ an71+Fn+1 _|_ ‘an+Fn+1 _ an71+Fn+Fn+1)
— An—?,( )(1 - ZL‘ an + an—1+Fn+1 + an—2+Fn—l+Fn+1 o an—l+Fn+Fn+1)
= A, 3(x)(1— — o) ottt AL o (2)(1 + 2f2 — )

= Bn_Q(JT) +x n_1+Fn+1Cn_2([L’).

Now, notice that the degree of B, _o(x) is Fo+ F3+---+ F,,_o+ F,, = 2F,, — F3, and we have
Fo 1+ F,1 > 2F, — Fysince (F,_1+ F,11) — (2F, — F3) = F,,_3 + F5 > 0. Informally, this
means that when we add the two polynomials B, »(z) and zf»-1T1C, _,(z), the terms
“don’t mix.” Then, the fact that B, o and C,_, are both timid implies that A,(x) =
By _o(x) + afn1 10 o () is timid as well.

Next, we show that B, is timid. We have

B(z) = Ap_o(z)(1 — 2™) (1 — pfr+r — gFne2)
= Ap_o(x)(1 — o+t — gtz — g pFntFots 4 gpFntlng)
= Ay o) (1 — 2 — i) 4 A,y (x) g T2
= B_1(z) + Ap_o(x)zHnt2,

Now we argue as before. Since the degree of B,,_; is 2F}, 1 — F3, which is less than F,, + F}, 1o,
the fact that B,,_; and A, _s are both timid implies that B,, is timid as well.
Finally, we show that C), is timid. We have

Cn(x) = Apoa(@)(1 = 2™)(1 + 2 — 2f+2)

A, _o(x)

An—a(z)(
)
)

_ :L.QFn+Fn—1 _ szn _I_ x2Fn+Fn+1)

1
= Auala) = 2 Ay )1+ 2P = )
= Ap-a(z) — $2F"Cn_1($).

The degree of A, 5 is Fo+ F3+---+ F, 1 = F,,1 — F3, and F, ;1 — F3 is less than 2F), since
2F, — (Fhy1 — F3) = F,,_o + F5 > 0. Therefore, since A, 5 and C,,_; are both timid, C,, is
timid as well.
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We have completed our proof that A, B,,, C,, are timid for all n. The proposition follows.
O

This proof also allows us to make a slightly more general conclusion.

Proposition 2. Let ti,ty,... be a sequence of positive integers satisfying t1 < to and t, o =
tni1 + tn for all positive integers n. Then the coefficients of the polynomial (1 — x™)(1 —
x2) - (1 = z') are all equal to —1,0 or 1 for all positive integers n.

To prove Proposition 2, we simply have to replace every occurrence of F), with t,,_; in the
proof of Proposition 1.
For instance, for any positive integers m < n, the coeflicients of polynomials [[,_, 41 (1 —zF k)

and [[,_ (1 — ka) are all equal to —1,0 or 1. Here L, is the kth Lucas number.
Note that while [, -, (1—2") has coefficients —1,0 and 1 due to Euler’s pentagonal number

theorem, we cannot say the same thing about its partial products, as Hizl(l — ") =
1 —x— 2%+ 22° — 2% — 2% + !9 Also, if a sequence of positive integers (¢,) satisfies
tnt1 > tn +ty—1 + -+ t; for all n, then the polynomial [];_,(1 — 2') clearly always has
coefficients —1,0 or 1. It would be interesting to characterize all sequences that have similar
properties.
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