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Abstract. A positive integer n is called an almost superperfect number if n satisfies
σ(σ(n)) = 2n − 1, where σ(n) denotes the sum of positive divisors of n. In this paper,
we prove the following results: (1) there does not exist any even almost superperfect num-
ber; (2) if n is an almost superperfect number, then n has at least two prime factors; (3)
if n is an almost superperfect number, then σ(n) is a perfect square; (4) if n is an almost
superperfect number and n is a multiple of 3, then n is a perfect square.

1. Introduction

Inspired by the failure to disprove the existence of odd perfect numbers, numerous authors
have defined a number of closely related concepts, many of which seem no more tractable
than the original. For example, in [1, B9], we call n an almost superperfect number if n
satisfies σ(σ(n)) = 2n− 1, where σ(n) denotes the sum of positive divisors of n. A natural
problem is: do there exist almost superperfect numbers? The problem has appeared in the
first edition of Guy’s book [1] since 1981. But there has not been any progress on this
problem. In this paper we try to deal with this problem.

In this paper, the following results are proved.

Theorem 1. If n is an almost superperfect number, then σ(n) is a perfect square.

Corollary. If n is an almost superperfect number, then n has at least two prime factors.

Theorem 2. There does not exist any even almost superperfect number.

Theorem 3. If n is an almost superperfect number and n is a multiple of 3, then n is a
perfect square.

2. Proof of the theorems

Before the proof of the main theorem, we introduce a lemma which gives an important
property of almost superperfect numbers. In this paper we always use pi, qj to denote primes.

Lemma. Assume that n = pα1
1 pα2

2 · · · pαt
t (p1 < p2 < · · · < pt, αi > 0, i = 1, 2, . . . , t) is an

almost superperfect number, and

1 + pi + · · ·+ pαi
i = q1

βi1 · · · qs
βis (1 ≤ i ≤ t), (1)

where β1j + · · ·+ βtj > 0 (1 ≤ j ≤ s), 2 ≤ q1 < · · · < qs.
Then

t∏
i=1

(
1 +

1

pi

+ · · ·+ 1

pαi
i

) s∏
j=1

(
1 +

1

qj

+ · · ·+ 1

q
β1j+···+βtj

j

)
< 2. (2)
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Proof. By (1) and

σ(n) =
(
1 + p1 + · · ·+ pα1

1

) · · · (1 + pt + · · ·+ pαt
t

)
,

we have

σ(n) = q1
β11+···+βt1 · · · qs

β1s+···+βts .

Since n is an almost superperfect number, by σ(σ(n)) = 2n− 1, we have

σ(σ(n))

σ(n)
· σ(n)

n
=

σ(σ(n))

n
= 2− 1

n
. (3)

Noting the fact that σ(n)/n is a multiplicative function whose value in the prime power
pα is 1 + 1/p + · · ·+ 1/pα, we know that the value of the left side of equation (3) is

t∏
i=1

(
1 +

1

pi

+ · · ·+ 1

pαi
i

) s∏
j=1

(
1 +

1

qj

+ · · ·+ 1

q
β1j+···+βtj

j

)
.

By (3) the lemma is obviously proved. ¤

Proof of Theorem 1. Suppose that n is an almost superperfect number. Let the notations
be as in the lemma. Then

2n− 1 = 2pα1
1 pα2

2 · · · pαt
t − 1

=
(
1 + q1 + · · ·+ qβ11+···+βt1

1

) · · · (1 + qs + · · ·+ qβ1s+···+βts
s

)
. (4)

From equation (4) we have that 1 + qi + · · · + qβ1i+···+βti

i is an odd number for 1 ≤ i ≤ s.
So we get the fact that if qi > 2 then β1i + · · ·+ βti is even for 1 ≤ i ≤ s.

Now, we want to prove that β1i + · · · + βti is even when qi = 2. Obviously, the only
possibility is i = 1. Suppose that q1 = 2 and β11 + · · · + βt1 is not even. Then we have
3 | 2β11+···+βt1+1 − 1.

By 1 + 2 + · · ·+ 2β11+···+βt1 = 2β11+···+βt1+1 − 1 and (4), we have

3 | 2pα1
1 pα2

2 · · · pαt
t − 1.

Then

pα1
1 pα2

2 · · · pαt
t ≡ −1 (mod 3).

So there exists at least one i(1 ≤ i ≤ t) satisfying pαi
i ≡ −1 (mod 3). Namely, pi ≡ −1

(mod 3) and αi is an odd number.
Hence,

1 + pi + · · ·+ pαi
i ≡ 0 (mod 3).

So by (1) we have q2 = 3. By (2), we have
(

1 +
1

2
+ · · ·+ 1

2β11+···+βt1

)(
1 +

1

3

)
< 2.

This is impossible. So β11 + · · ·+ βt1 is even.
Thus we have proved that 2 | β1i + · · ·+ βti for 1 ≤ i ≤ s. Since

σ(n) = q1
β11+···+βt1 · · · qs

β1s+···+βts ,

σ(n) is a perfect square. This completes the proof of Theorem 1. ¤
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Proof of the Corollary. Suppose that n = pα(p is a prime) is an almost superperfect number.
By Theorem 1, we have σ(pα) = m2.
Namely,

1 + p + · · ·+ pα = m2.

Ljunggren [2] proved that

xn − 1

x− 1
= y2

has only two solutions (x, y, n) = (3, 11, 5), (7, 20, 4). We can check that neither p = 3, α = 4
nor p = 7, α = 3 satisfying σ(σ(pα)) = 2pα−1. This completes the proof of the corollary. ¤

Proof of Theorem 2. Let the notations be as in the lemma. If n is an almost superperfect
number and n is an even number, then we can assume n = 2α1pα2

2 · · · pαt
t (3 ≤ p2 < · · · < pt,

αi > 0, i = 1, 2, · · · , t).
By

2α1+1 − 1 = 1 + 2 + · · ·+ 2α1 = q1
β11 · · · qs

β1s ,

there exists at least one i(1 ≤ i ≤ s) satisfying qi | 2α1+1 − 1. Thus,

qi ≤ 2α1+1 − 1.

Then the left side of equation (2)

≥
(

1 +
1

2
+ · · ·+ 1

2α1

)(
1 +

1

qi

)
≥ 2α1+1 − 1

2α1

(
1 +

1

2α1+1 − 1

)
= 2.

By the lemma, it is impossible. So there does not exist any even almost superperfect number.
This completes the proof of Theorem 2. ¤

Proof of Theorem 3. Let the notations be as in the lemma. By Theorem 2 we need only to
consider odd numbers n. If n is an almost superperfect number and n is a multiple of 3,
then p1 = 3. By (2) we have (

1 +
1

p1

)(
1 +

1

q1

)
< 2.

So q1 > 2. Then σ(n) is an odd number.
By (1) and q1 > 2 we have

1 + pi + · · ·+ pαi
i ≡ 1 (mod 2).

Since pi > 2(1 ≤ i ≤ t), we have

αi ≡ 0 (mod 2) (1 ≤ i ≤ t).

Hence, n is a perfect square. This completes the proof of Theorem 3. ¤
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