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Abstract. In this paper, we prove that positive integer solutions {an} to

an =

{
c1an−1+c2an−2+···+ckan−k

d , if d|c1an−1 + · · ·+ ckan−k;
c1an−1 + c2an−2 + · · ·+ ckan−k, otherwise,

where the c’s are nonnegative integers, and d = c1 + c2 + · · · + ck, have the property that
either {an} is periodic with period at most k, or {an} is unbounded.

1. Introduction

Within the field of different equations is a subfield that deals with integer solutions to
recurrence relations. The Fibonacci numbers are probably the most studied example, but the
Fibonacci relation is linear, which greatly simplifies the study. There is a class of nonlinear
recurrence relations in which very little is known. The simplest example of something in
that class is the relation defined by

an =

{
an−1+an−2

2
, if 2|an−1 + an−2;

an−1 + an−2, otherwise,
(1)

with a0 and a1 positive integers. Already with this modification, things are difficult. For
certain values of the initial conditions, the sequence is stationary, for example a0 = 1 and
a1 = 1. It is proved in [1] that if the sequence is not stationary, it is unbounded. This
appears to be the extend of the knowledge on this simple nonlinear variation on the Fibonacci
sequence. In particular, the author is unaware of any formulas for an in cases where it is
unbounded, or even any asymptotics on the growth of the sequence.

In this paper, we extend what is known about (1) to difference equations of the form

an =

{
c1an−1+c2an−2+···+ckan−k

d
, if d|c1an−1 + · · ·+ ckan−k;

c1an−1 + c2an−2 + · · ·+ ckan−k, otherwise,
(2)

where the c’s are nonnegative integers, and d = c1 + c2 + · · ·+ ck. Here are our main results.

Theorem 1. Let c1, c2, . . . , ck be positive integers, and let d = c1 + c2 + · · · + ck. Consider
the recurrence relation

an =

{
c1an−1+c2an−2+···+ckan−k

d
, if d|c1an−1 + · · ·+ ckan−k;

c1an−1 + c2an−2 + · · ·+ ckan−k, otherwise,

subject to the initial condition that a0, a1 . . . , ak−1 be positive integers. This recurrence has
the property that {an} is either unbounded or stationary.

Theorem 1 is, itself, a special case of the following theorem.

146 VOLUME 46/47, NUMBER 2



UNBOUNDEDNESS OF A FAMILY OF DIFFERENCE EQUATIONS

Theorem 2. Suppose that c1, c2, . . . , ck are nonnegative integers, ck > 0, and at least one
other ci > 0. Let d = c1 + c2 + · · ·+ ck. Consider the recurrence relation

an =

{
c1an−1+c2an−2+···+ckan−k

d
, if d|c1an−1 + · · ·+ ckan−k;

c1an−1 + c2an−2 + · · ·+ ckan−k, otherwise,

with initial condition that a0, a1, · · · , ak−1 be positive integers. This recurrence has the prop-
erty that {an} is either unbounded or periodic with period ≤ k. In particular, if the recurrence
does not have the form an = f(an−l, an−2l, . . . , an−ml) for some l > 1, the recurrence is either
unbounded or stationary.

We state Theorem 1 separately from Theorem 2 because Theorem 1 is substantially easier
to prove than Theorem 2, and is a needed result on the way to the proof of Theorem 2.

Our proof makes use of an auxiliary sequence {bn} defined as follows:

bn = 0, if 0 ≤ n ≤ k − 2,

bn = min(an, an−1, . . . , an−k+1), if n ≥ k − 1.

Note that we can replace the condition that {an} is stationary by the weaker condition that
{an} is eventually stationary. That is, the only eventually stationary sequences of positive
integers that satisfy (2) are strictly stationary. To see this suppose that an = an−1 =
. . . = an−k+1 = a for some n. Since a > 0, each ci ≥ 0, and at least two c’s are positive,
c1an−1 + c2an−2 + · · ·+ ckan−k > a. Consequently,

a = an =
c1a + c2a + · · ·+ ck−1a + ckan−k

c1 + c2 + · · ·+ ck

.

Solving this for an−k, which we can do since we assume ck 6= 0, we have that an−k = a. Thus,
we can induct all the way to a0 = a.

2. Preliminaries

We make frequent use of the following inequalities, which we state for completeness.

Lemma 1. Given any real numbers x1, . . . , xk,

(a) If c1, c2 . . . , ck are positive real numbers,

min(x1, x2, . . . , xk) ≤ c1x1 + c2x2 + · · ·+ ckxk

c1 + c2 + · · ·+ ck

≤ max(x1, x2, . . . , xk),

and both inequalities are strict unless x1 = x2 = · · · = xk.
(b) If c1, c2, . . . , ck are nonnegative real numbers with a positive sum, then

min(x1, x2, . . . , xk) ≤ c1x1 + c2x2 + · · ·+ ckxk

c1 + c2 + · · ·+ ck

.

Proof. These are obvious. ¤

Lemma 2. Given a sequence {an} satisfying (2), the companion sequence {bn} is nonde-
creasing.
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Proof. The result being obvious for 0 ≤ n ≤ k − 1, we proceed by induction on n. We have

bn+1 = min(an+1, an, an−1, . . . , an−k+2).

Now,

an+1 ≥ c1an + c2an−1 + · · ·+ ckan−k+1

c1 + c2 + · · ·+ ck

≥ min(an, an−1, . . . , an−k+1) = bn.

Thus, each of an+1, an, . . . , an−k+2 is at least bn, so bn+1 ≥ bn. ¤
When some of the c’s can be zero, there is the possibility of non-stationary periodic

solutions. For example,

an =

{
an−2+an−4

2
, if 2|an−2 + an−4;

an−2 + an−4, otherwise,
(3)

has periodic solutions such as a2k = 1, a2k+1 = 2. In this case, we could decouple the even
and odd terms to get two recurrences:

a2n =

{
a2(n−1)+a2(n−2)

2
, if 2|a2(n−1) + a2(n−2);

a2(n−1) + a2(n−2), otherwise,

and

a2n+1 =

{
a2(n−1)+1+a2(n−2)+1

2
, if 2|a2(n−1)+1 + a2(n−2)+1;

a2(n−1)+1 + a2(n−2)+1, otherwise.

Obviously, such a decoupling exists whenever the recurrence has the form an = f(an−l, an−2l,
. . . , an−ml) for some l > 1. We call such a recurrence reducible, and recurrences that don’t
have this form irreducible.

Finally, for this section, we state a theorem from the theory of numbers that is needed for
the proof of Theorem 2.

Lemma 3. If n1, n2, . . . , nk are positive integers with gcd(n1, n2, . . . , nk) = 1 then for every
positive integer m there is a positive integer N such that for every integer r ≥ 0 there are
nonnegative integers x1, x2, . . . , xk, with xk ≥ m, and

x1n1 + x2n2 + · · ·+ xknk = N + r. (4)

That is, every integer ≥ N is a nonnegative integer linear combination of n1, n2, . . . , nk.

Proof. Since gcd(n1, n2, . . . , nk) = 1, there are integers y1, y2, . . . , yn such that y1n1 + · · · +
yknk = 1 [4, Theorem 2.15, pg. 114]. Let y = max(|y1|, . . . , |yk|). We may now take N =
kyn1n2 . . . nk + mnk, To see this, note that by checking the result for r = 0, 1, 2, . . . , nk − 1,
we have verified the result for all nonnegative r since one may add multiples of nk to each
side of (4). Now N = 0x1 + · · · + 0xk−1 + N

nk
nk, and N

nk
is an integer greater than m. If

1 ≤ r < nk, then
ry1n1 + · · ·+ ryknk = r.

We add N to both sides and note that

N =
yn1n2 · · ·nk

n1

n1 + · · ·+ yn1n2 · · ·nk

nk−1

nk−1 +

(
yn1n2 · · ·nk

nk

+ m

)
nk.

We have
x1n1 + x2n2 + · · ·+ xknk = N + r,
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with xi = yi + yn1n2···nk

ni
, if i < k, xk = yk + yn1n2···nk

nk
+ m. Thus, each xi is nonnegative, and

xk ≥ m, as desired. ¤

3. A Proof of Theorem 1

In this section, we assume that each of c1, c2, . . . , ck is a positive integer. The proof of the
theorem follows from the proof of the following lemma.

Lemma 4. Given a sequence {an} satisfying (2) and companion sequence {bn}, then, an+1 ≥
bn. Moreover, am+1 = bm for some m only if {an} is stationary from n = m− k + 1 on.

Proof. As in Lemma 2, an+1 ≥ c1an+c2an−1+···+ckan−k+1

c1+c2+···+ck
≥ bn. By Lemma 1, the second

inequality is strict unless an = an−1 = · · · = an−k+1. Thus, if for some m, am+1 = bm, then
for some a, am = · · · = am−k+1 = a. In this case,

c1am + c2am−1 + · · ·+ ckam−k+1 = (c1 + · · ·+ ck)a,

so am+1 = a. Clearly, this gives us that an = a for all n ≥ m− k + 1. ¤
Proof of Theorem. Suppose that {an} is not eventually stationary. We show that for

all m, bm+k > bm. This proves that {bn} is unbounded. Moreover, since an+1 ≥ bn for all n,
{an} is also unbounded.

Now bm+k = min(am+k, am+k−1, . . . , am+1). If {an} is not eventually stationary, then by
Lemma 4, am+1 > bm. In fact, for all positive integers j, am+j > bm+j−1 ≥ bm. That is,
each of am+1, . . . , am+k is strictly larger than bm. Hence, bm+k is strictly larger than bm, as
desired. ¤

4. A Proof of Theorem 2

Although it must still be the case that an+1 ≥ bn for all n, the rest of Lemma 4 need not
be true if some of the c’s are zero; we must be more careful in our analysis in this case. We
introduce some notation. Rewrite (2) in the form

an =

{
c1an−k+c2an−k+l1

+···+cman−k+lm−l

d
, if d| numerator;

c1an−k + c2an−k+l1 + · · ·+ cman−k+lm−1 , otherwise,
(5)

where c1, . . . , cm are positive integers, d = c1 + · · · + cm, and 0 < l1 < l2 < · · · < lm−1 < k.
that is we write (2) in terms of the nonzero c’s.

The key to Theorem 2 is the following lemma.

Lemma 5. Consider the array Aj = [ajk, ajk+1, . . . , ajk+k−1]. We have that bjk+k−1 is the
minimum value of the entries in this array. Suppose the minimum is a, and this minimum oc-
curs r times. Then a can occur at most r times in Aj+1 = [a(j+1)k, a(j+1)k+1, . . . , a(j+1)k+k−1],
and if a does occur r times in Aj+1, then either the sequence is eventually stationary or (5)
is reducible.

Proof. That a can occur at most r times in Aj+1 follows from

a(j+1)k+i ≥
c1ajk+i + c2ajk+i+l1 + · · ·+ cmajk+i+lm−1

d
, (6)

with strict inequality if ajk+i > a. That is, suppose that ajk+u1 , ajk+u2 , . . . , ajk+ur are the
terms of the sequence in Aj with values of a, where 0 ≤ u1 < u2 < · · · < ur < k. Then by
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(6), a(j + 1)k + i > a unless i is one of the u’s. Moreover, this shows that if a does occur r
times in Aj+1, it must be at positions a(j+1)k+u1 , a(j+1)k+u2 , . . . , a(j+1)k+ur . Also, if

a = a(j+1)k+ui
=

c1ajk+ui + c2ajk+ui+l1 + · · ·+ cmajk+ui+lm−1

d

then it follows that ajk+ui+l1 = · · · = ajk+ui+lm−1 = a.
For the remainder of this proof, suppose that a occurs r times in An+1. Based on the

discussion above, it follows that for any n ≥ jk, an = a if and only if

an−k = an−k+l1 = · · · = an−k+lm−1 = a. (7)

Also, for all i ≥ j, Ai has exactly r values equal to a, and in exactly the positions ik +
u1, ik + u2, . . . , ik + u4. We claim that for all nonnegative integers x1, x2, . . . , xm−1, and all
i ≥ j,

aik+u1+x1l1+x2l2+···+xm−1lm−1 = a.

This follows by induction on x1 + x2 + · · · + xm−1, the case where the sum is 1 having
already been done. The induction follows from (7). If aik+u1+x1l1+x2l2+···+xm−1lm−1 = a, then
a(i+1)k+u1+x1l1+x2l2+···+xm−1lm−1 = a. But if

a(i+1)k+u1+x1l1+x2l2+···+xm−1lm−1 = a,

then
aik+u1+(x1+1)l1+x2l2+···+xm−1lm−1 = a,

...
aik+u1+x1l1+x2l2+···+(xm−1+1)lm−1 = a.

Finally, let D = gcd(k, l1, . . . , lm−1). If D = 1, then by Lemma 3, there is an integer n such
that we may pick i, x1, . . . , xm−1 so that i ≥ j and ik + u1 + x1l1 + · · · + xm−1lm−1 = x, for
any integer x ≥ N . Consequently, ax = a for all x ≥ N and the sequence of a’s is eventually
stationary. On the other hand, if D > 1, then (5) is reducible. This completes the proof of
the lemma. ¤

Proof of Theorem. Suppose first that we have an irreducible difference equation (5),
with solution {an}. We claim that the only periodic solutions are stationary solutions. This
follows from Lemma 5. As in the lemma, write Aj = [ajk, ajk+1, . . . , ajk+k−1], with minimum
entry a, and suppose that a occurs r times among the entries of Aj. Since the difference
equation is irreducible, if {an} is not eventually stationary, the number of occurrences of a
in Aj+1 must be strictly less than r. In particular, every entry in Aj+r must be larger than
a since the number of occurrences of a must drop by at least 1 in each iteration. Thus, in
general, the minimum value of the entries of Aj is less than the minimum value of the entries
in Aj+k, since we always have r < k for nonstationary sequences. In terms of the companion
sequence {bn}, this says that for all j, b(jk+k−1)+k2 > bjk+k−1. In fact, the proof of Lemma
5 could be strengthened to show that bn+k2 > bn for all n in this case. Consequently, in the
case of irreducible difference equations, any nonstationary sequence has the property that
limn→∞ an = ∞.

Next, consider the case where (5) is reducible. This implies that D = gcd(k, l1, . . . , lm−1) >
1, and (5) may be decoupled into D recurrence relations. Since an = f(an−D, an−2D, . . . , an−mD),
we have that for each i, with 0 ≤ i < D, anD+i = f(aD(n−1)+i, . . . , aD(n−m)+i), so letting cn =
anD+i, cn = f(cn−1, . . . , cn−m). Moreover, each of these D recurrence relations is irreducible.
(This follows from the fact that if gcd(n1, n2, . . . , nk) = D, then gcd(n1

D
, n2

D
, . . . , nk

D
) = 1.) If
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all of these derived sequences are stationary, then (5) has periodic solutions with period at
most D. If any of the derived sequences is not stationary, then the sequence of the c’s is
unbounded, and so the sequence of the a’s is also unbounded. This completes the proof. ¤

5. Comments

Based on the proof of Theorem 2, we see that while in the case of irreducible difference
equations (5), limn→∞ an = ∞ unless the sequence is stationary, this need not be the case
for reducible difference equations. For example, with the difference equation in (3), if we
have initial conditions of a0 = 1, a1 = 1, a2 = 1, a3 = 2, then a2n = 1 for all n, where as
a2n+1 is unbounded.

It would be interesting to investigate the boundedness of solutions to (2) when the initial
a’s do not have to all be positive. Obviously, the case where all the a’s are negative is
symmetric to the case covered in this paper. The author has not investigated the case where
some initial a’s are positive and some are negative. See also [2] and [3] for other possible
generalizations of this problem.

One might ask what happens with difference equations of the form

an =

{
c1an−1+c2an−2+···+ckan−k

d
, if d|c1an−1 + · · ·+ ckan−k;

c1an−1 + c2an−2 + · · ·+ ckan−k, otherwise,
(8)

where d > c1+c2+ · · ·+ck. In particular, there is an entire family of Fibonacci-like difference
equations of the form

an =

{
an−1+an−2

m
, if m|an−1 + an−2;

an−1 + an−2, otherwise,
(9)

with m > 2. These difference equations are much harder to analyze. One difficulty is that
solutions to (8) or (9) may be eventually periodic, without being initially periodic. For
example, in

an =

{
an−1+an−2

3
, if 3|an−1 + an−2;

an−1 + an−2, otherwise,
(10)

with initial conditions a0 = 5, a1 = 1, the sequence continues a2 = 2, a3 = 1, a4 = 1, a5 = 2,
and the solution is eventually periodic with period 3. It is conjectured in [3] that positive
integer solutions to (10) are either eventually periodic with period 3, or unbounded. Scant
numerical evidence by the author suggests that if the difference equation (8) is irreducible,
then it is either eventually periodic with “small” period or unbounded. For example, it
appears that any positive integer solution to

an =

{
an−1+an−2

5
, if 5|an−1 + an−2;

an−1 + an−2, otherwise,

is eventually periodic with period at most 6 or it is unbounded. In the entire family in (9),
the author is only aware of periodic solutions in the cases m = 3, m = 5. In particular, the
author has checked that there are no periodic solutions with period < 13 for any m other
than 3 or 5.
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