
ESCALATOR NUMBER SEQUENCES

H. G. GRUNDMAN

Abstract. An escalator sequence is an infinite sequence of rational numbers such that each
partial sum is equal to the corresponding partial product. An escalator number is one of
these partial sums, where at least the first two numbers of the sequence are included. So for
each escalator sequence, there is an associated sequence of escalator numbers. In this paper
we consider to what degree a single escalator number determines an associated sequence of
escalator numbers in which it appears.

1. Introduction

A sequence of rational numbers, a1, a2, . . . , is an escalator sequence if for each n ∈ Z+,
n∑

i=1

ai =
n∏

i=1

ai.

The first term of the sequence, a1, is called the base of the sequence. Denote the partial
sums (or products) of an escalator sequence, by

An =
n∑

i=1

ai.

Each An with n ≥ 2 is called an escalator number. We call the sequence of partial sums,
A2, A3, . . . the associated escalator number sequence. These concepts were first introduced
by Pizá [3, 4, 5].

As shown in [2], an escalator sequence is uniquely determined by its base, a1 = A1, and
any rational number other than 1 is the base of an (infinite) escalator sequence.

In this paper, we consider the possibility of reversing the process. What can we deduce
about an escalator sequence, given a single escalator number in it. More specifically, given
an escalator number A and some n ≥ 2, we ask:

• Is there an escalator sequence for which A = An?
• For how many different escalator sequences does A = An?
• Is there a maximal value of m ≥ 2 such that there is an escalator sequence for which

A = Am?

Define an escalator number sequence to be maximal if it is not a proper subsequence of any
other escalator number sequence. Along with answering the above questions, we prove that
each escalator number is contained in a unique maximal escalator number sequence.

2. Preliminary Results

We begin with some basic results, the proofs of which are immediate. Let a1, a2, . . . be an
escalator sequence with associated escalator number sequence A2, A3, . . . . Then for n ≥ 1,
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An+1 = An + an+1 = Anan+1, (1)

an+1 =
An

An − 1
, (2)

and

An+1 =
A2

n

An − 1
. (3)

For each n ∈ Z+, let un ∈ Z and vn ∈ Z+ with gcd(un, vn) = 1 such that

An =
un

vn

.

Then

An+1 =
A2

n

An − 1
=

u2
n

vn(un − vn)
, (4)

with gcd(u2
n, vn(un − vn)) = 1 and so

un+1 = ±u2
n and vn+1 = vn|un − vn|. (5)

Note that given an escalator number A = An, for each m > n, the values of am and Am are
completely determined. We now investigate the degree to which these values are determined
for m ≤ n.

Let a1, a2, a3, a4, . . . be an escalator sequence. Since A2 = a1 + a2 = a1a2, it’s also true
that A2 = a2 + a1 = a2a1. Thus, a2, a1, a3, a4, . . . is also an escalator sequence, one with the
same associated escalator number sequence.

Given any escalator number, A, by definition, A = An for some escalator sequence. By
the above, there is at least one additional escalator sequence with An = A, unless a1 = a2.
Restricting to n = 2, we show that these are the only such escalator sequences. Specifically,
in the next two theorems we show that for a fixed escalator number, there exists at least one
and at most two escalator sequences with the given escalator number equal to the partial
sum A2.

Theorem 1. Let A be an escalator number. There exists an escalator sequence b1, b2, . . .
with partial sum B2 = A. Further, if c1, c2, . . . is an escalator sequence with partial sum
C2 = A, then either

• bi = ci, for i ≥ 1 (that is, the two sequences are identical); or
• b1 = c2, b2 = c1, and bi = ci, for i > 2.

Proof. Let A = An+1, with n ∈ Z+, be an escalator number with associated escalator
sequence a1, a2, . . . . If we set b1 = An, then b1 determines an escalator sequence b1, b2, . . .
with partial sums B1 = b1 = An and, by (3),

B2 =
A2

n

An − 1
= An+1 = A.

Now if c1, c2, . . . is an escalator sequence with partial sum C2 = A = B2, then using (3),

c2
1

c1 − 1
= A =

b2
1

b1 − 1
,

and so, solving the quadratic equation for c1, c1 = b1 or c1 = b1
b1−1

= b2. Equality for i > 2

is immediate from (2) and (3). ¤
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Theorem 2. There exists exactly one escalator sequence with partial sum A2 = 0, exactly
one escalator sequence with partial sum A2 = 4, and for each escalator number A /∈ {0, 4},
there are exactly two escalator sequences with partial sum A2 = A.

Proof. Let A be an escalator number. By Theorem 1, there is an escalator sequence,
b1, b2, . . . , with partial sum B2 = A. As noted above, swapping the first two numbers in
the sequence results in another escalator sequence. More precisely, letting b′1 = b2, b′2 = b1,
and for i > 2, b′i = bi, b′1, b

′
2, . . . is an escalator sequence with partial sum B′

2 = b′1 + b′2 = A.
These two escalator sequences with partial sums B2 = B′

2 = A are distinct unless b1 = b2.
But, using (2), it is easily shown [2, 5] that this occurs only when b1 ∈ {0, 2} and so
A = An+1 ∈ {0, 4}. ¤

We have thus shown that given an escalator number A, there is a unique (unordered) pair
of rational numbers, say {r, s}, such that A = r + s = rs. Determining whether there is an
escalator sequence with partial sum A3 = A is therefore reduced to the question of whether at
least one of the uniquely determined pair {r, s} is an escalator number. Theorem 4 states that
for a nonzero escalator number A, the numbers r and s cannot both be escalator numbers.
The proof uses the following theorem from [2] which we reprove here for completeness.

Theorem 3. A nonzero rational number A is an escalator number if and only if A2− 4A is
a square in Q.

Proof. If A is an escalator number, then solving A = A2
n

An−1
for An, we get An = A±m

2
with

m2 = A2 − 4A. Conversely, if A2 − 4A = m2, let a1 = A+m
2

. Then by equation (3),

A2 =
a2
1

a1−1
= A. ¤

Theorem 4. For a nonzero escalator number A2 = a1 + a2 = a1a2, the numbers a1 and a2

are not both escalator numbers.

Proof. Suppose a1 is an escalator number. Then a2
1 − 4a1 = t2 for some t ∈ Q. Now,

a2
2 − 4a2 =

(
a1

a1−1

)2

− 4a1

a1−1
=

−3a2
1+4a1

(a1−1)2
=

−4a2
1−t2

(a1−1)2
< 0. Thus by Theorem 3, a2 is not an

escalator number. ¤

Corollary 5. Let A = An be an escalator number with associated escalator sequence a1, a2, a3,
a4, . . . . If a1 = a2, then this is the unique escalator sequence with partial sum An = A and if
a1 6= a2, then a2, a1, a3, a4, . . . is the only other escalator sequence with partial sum An = A.

Since each of the escalator sequences in the above corollary yields the same escalator
number sequence, the next result is immediate.

Corollary 6. If A = An is an escalator number, then there exists a unique escalator number
sequence, A2, A3, . . . with A = An.

3. Main Results

In this section, we prove Theorem 7 which states that for each nonzero escalator number
A there is a unique maximal n for which there exists an escalator sequence a1, a2, . . . , with
partial sum An = A. We call this value the width of the escalator number A. Hence
Theorem 7 asserts that each nonzero escalator number has finite width.
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Theorem 7. If A is a nonzero escalator number, then there is some minimal W > 1 such
that for each m > W , there is no escalator sequence with A = Am. Further, if A = u

v
where

u, v ∈ Z, v > 0, then W ≤ v + 1.

Proof. By Theorem 3, if An is any escalator number, then An ≤ 0 or An ≥ 4. Therefore,
letting An = un

vn
as in Section 2, if An 6= 0, then |un − vn| ≥ 2. Now, using equation (5),

vn+1 = vn|un − vn| > vn. Since v2 ≥ 1, it follows by induction that for all n ≥ 1, vn+1 ≥ n.
Thus, given an escalator number A with A = u

v
where u, v ∈ Z, v > 0 and an escalator

sequence a1, a2, . . . , if v < n, then A 6= An+1. In particular, for n > v + 1, A 6= An, as
desired. ¤

Observe that the width of the escalator number 4 is 2, since the escalator sequence with
base a1 = 2 yields a2 = 2 and A2 = 4, and 2 is not an escalator number. Now the proof of
Theorem 7 gives the bound for the width of A = 4 = 4

1
to be v + 1 = 2, the best possible

bound in that case. This is, however, the only case in which the bound from Theorem 4 is
the best possible. The following corollaries give more complete information. (It should be
noted that the first terms of the escalator sequence with base 2 formed the answer to the
problem proposed by E. D. Schell in the American Mathematical Monthly in 1945 [1] that
originally inspired Pizá to study these numbers [5].)

Corollary 8. Let A = u
v

be a nonzero escalator number with u, v ∈ Z, v > 0, and gcd(u, v) =

1. If A = 4 = 4
1
, then the width of A is v + 1. If A = −1

2
, 9

2
, or 16

3
, then the width of A is

v. Otherwise, the width of A is strictly less than v.

Proof. Let the width of A be W > 1 and fix an escalator sequence with partial sum AW = A.
If A2 = 4, then A3 = 16

3
, and A4 = 256

39
. Applying the same induction as in the proof of

Theorem 7, for n ≥ 4, vn ≥ n + 35 and so if W ≥ 4, the width of A is strictly less than v.
Now assume that A2 6= 4. Since the only rational integer escalator numbers are 0 and

4 [2, 5] and A2 6= 0 or 4, v2 ≥ 2. Again using induction, we get that for n ≥ 2, vn ≥ n. So
the width of A is less than or equal to v.

Suppose additionally that the width of A is equal to v. If A = A2, then we have A = u
2

for
some odd integer u. By equation (5), 2 = v1|u1 − v1|. Thus v1 = 1 or 2 and it follows that
A = −1

2
or 9

2
. If, on the other hand, A 6= A2, note that v3 = v2|u2 − v2| ≥ 2 · 2 ≥ 4 and so

by induction, for n ≥ 3, vn ≥ n + 1, which is impossible since the width of A is equal to v.
Thus, in all other cases, the width of A is strictly less than v, as desired. ¤
Using equation (5) as in the proof of Theorem 7, but instead considering the numerator,

we get the next corollary.

Corollary 9. Let A = r
s

be an escalator number with r, s ∈ Z, s > 0, and gcd(r, s) = 1.

Then either r = ±1 or there is some maximal i ∈ Z+ such that r = ±x2i
with x ∈ Z. The

width of A is less than or equal to i + 1.

Finally, we consider maximal escalator sequences. For a fixed escalator number A, let SA

be the set of all escalator number sequences, A2, A3, . . . with A = Ai for some i ≥ 2. The
usual concept of subsequence defines a partial order on SA. We show that SA has a unique
maximal element.

Theorem 10. Each nonzero escalator number is contained in a unique maximal escalator
number sequence.
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Proof. By Theorem 7, there is a maximal i = W for which A = Ai in any element of SA. By
Corollary 6, there is exactly one element of SA with A = AW . ¤
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