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Abstract. In this paper, we obtain an identity involving the Lucas numbers and Stirling
numbers.

1. Introduction and Results

The Fibonacci sequence {Fn} and the Lucas sequence {Ln}(n ∈ N = {0, 1, 2, . . .}) are
defined by the second-order linear recurrence sequences:

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 (1.1)

and
Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1, (1.2)

respectively. Clearly, we have

Ln+1 = Fn+2 + Fn (n ∈ N0 := N ∪ {0}). (1.3)

These sequences play a very important role in the study of the theory and application of
mathematics. Therefore, the various properties of Fn and Ln were investigated by many au-
thors (see [1, 2, 4, 5, 6]). The main purpose of this paper is to prove an identity involving the
Lucas numbers and Stirling numbers. That is, we shall prove the following main conclusion.

Theorem. Let n ≥ k (n, k ∈ N). Then

∑

v1,··· ,vk∈N
v1+···+vk=n

Lv1Lv2 · · ·Lvk

v1v2 · · · vk

=
k!

n!

n∑

j=k

(−1)j−k(n− j)!

(
n

j

)(
j

n− j

)
s(j, k), (1.4)

where the s(n, k) are the Stirling numbers of the first kind defined by (see [3])

x(x− 1)(x− 2) · · · (x− n + 1) =
n∑

k=0

s(n, k)xk, (1.5)

or by the following generating function

(log(1 + x))k = k!
∞∑

n=k

s(n, k)
xn

n!
. (1.6)

2. Definition and Lemma

Definition. For a real or complex parameter x, the generalized F ibonacci numbers F
(x)
n ,

which are defined by (
1

1− t− t2

)x

=
∞∑

n=0

F (x)
n tn. (2.1)
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The numbers F
(1)
n−1 = Fn are the ordinary Fibonacci numbers.

Lemma. Let n ≥ k(n ∈ N) and

δ(n, k) :=
n∑

j=k

(−1)j−k(n− j)!

(
n

j

)(
j

n− j

)
s(j, k). (2.2)

Then

n!F (x)
n =

n∑

k=1

δ(n, k)xk. (2.3)

Proof. By (2.1) and (1.5), we have

∞∑
n=0

F (x)
n tn =

(
1

1− t− t2

)x

=
∞∑

j=0

(
x + j − 1

j

)
(t + t2)j

=
∞∑

j=0

(
x + j − 1

j

)
tj

j∑
n=0

(
j

n

)
tn

=
∞∑

j=0

(
x + j − 1

j

) 2j∑
n=j

(
j

n− j

)
tn

=
∞∑

n=0

n∑
j=0

(
j

n− j

)(
x + j − 1

j

)
tn, (2.4)

which readily yields

n!F (x)
n = n!

n∑
j=0

(
j

n− j

)(
x + j − 1

j

)

= n!
n∑

j=0

1

j!

(
j

n− j

)
(x + j − 1)(x + j − 2) · · · (x + 1)x

=
n∑

j=0

(n− j)!

(
n

j

)(
j

n− j

) j∑

k=1

(−1)j−ks(j, k)xk

=
n∑

k=1

n∑

j=k

(−1)j−k(n− j)!

(
n

j

)(
j

n− j

)
s(j, k)xk =

n∑

k=1

δ(n, k)xk.

This completes the proof of Lemma. ¤

Remark 1. Setting n = 1, 2, 3, 4 in Lemma, we get

1!F
(x)
1 = x, 2!F

(x)
2 = 3x + x2, 3!F

(x)
3 = 8x + 9x2 + x3,

and

4!F
(x)
4 = 42x + 59x2 + 18x3 + x4.
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3. Proof of the Theorem

Proof of the Theorem. By applying the Lemma, we have

k!δ(n, k) = n!
dk

dxk
F (x)

n |x=0. (3.1)

On the other hand, it follows from (2.1) that

∞∑

n=k

dk

dxk
F (x)

n |x=0t
n =

(
log

1

1− t− t2

)k

. (3.2)

Thus, by (3.1) and (3.2), we have

k!
∞∑

n=k

δ(n, k)
tn

n!
=

(
log

1

1− t− t2

)k

. (3.3)

By

d

dt
log

1

1− t− t2
=

1 + 2t

1− t− t2
=

∞∑
n=0

F (1)
n tn + 2t

∞∑
n=0

F (1)
n tn

we have

log
1

1− t− t2
=

∞∑
n=0

F (1)
n

tn+1

n + 1
+ 2

∞∑
n=0

F (1)
n

tn+2

n + 2
=

∞∑
n=0

Fn+1
tn+1

n + 1
+ 2

∞∑
n=0

Fn+1
tn+2

n + 2

=
∞∑

n=0

Fn+1
tn+1

n + 1
+ 2

∞∑
n=1

Fn
tn+1

n + 1
=

∞∑
n=0

(Fn+1 + 2Fn)
tn+1

n + 1
=

∞∑
n=0

Ln+1
tn+1

n + 1

=
∞∑

n=1

Ln
tn

n
(3.4)

which yields

k!
∞∑

n=k

δ(n, k)
tn

n!
=

( ∞∑
n=1

Ln

n
tn

)k

=
∞∑

n=k




∑

v1,··· ,vk∈N
v1+···+vk=n

Lv1Lv2 · · ·Lvk

v1v2 · · · vk


 tn. (3.5)

By (3.5), we have

δ(n, k) =
n!

k!

∑

v1,··· ,vk∈N
v1+···+vk=n

Lv1Lv2 · · ·Lvk

v1v2 · · · vk

. (3.6)

By (3.6) and (2.2), we may immediately deduce the following

∑

v1,··· ,vk∈N
v1+···+vk=n

Lv1Lv2 · · ·Lvk

v1v2 · · · vk

=
k!

n!

n∑

j=k

(−1)j−k(n− j)!

(
n

j

)(
j

n− j

)
s(j, k). (3.7)

This completes the proof of the Theorem. ¤
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Remark 2. Setting k = 1 in (3.7) and noting that s(j, 1) = (−1)j−1(j − 1)! (j ∈ N) (see
[3]), we have

Ln =
n∑

j=1

n

j

(
j

n− j

)
. (3.8)
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