AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS

GUODONG LIU

Abstract. In this paper, we obtain an identity involving the Lucas numbers and Stirling numbers

1. Introduction and Results

The Fibonacci sequence $\left\{F_{n}\right\}$ and the Lucas sequence $\left\{L_{n}\right\}(n \in \mathbb{N}=\{0,1,2, \ldots\})$ are defined by the second-order linear recurrence sequences:

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1, \tag{1.2}
\end{equation*}
$$

respectively. Clearly, we have

$$
\begin{equation*}
L_{n+1}=F_{n+2}+F_{n} \quad\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right) \tag{1.3}
\end{equation*}
$$

These sequences play a very important role in the study of the theory and application of mathematics. Therefore, the various properties of F_{n} and L_{n} were investigated by many authors (see $[1,2,4,5,6]$). The main purpose of this paper is to prove an identity involving the Lucas numbers and Stirling numbers. That is, we shall prove the following main conclusion.

Theorem. Let $n \geq k(n, k \in \mathbb{N})$. Then

$$
\begin{equation*}
\sum_{\substack{v_{1}, \cdots, v_{k} \in \mathbb{N} \\ v_{1}+\cdots+v_{k}=n}} \frac{L_{v_{1}} L_{v_{2}} \cdots L_{v_{k}}}{v_{1} v_{2} \cdots v_{k}}=\frac{k!}{n!} \sum_{j=k}^{n}(-1)^{j-k}(n-j)!\binom{n}{j}\binom{j}{n-j} s(j, k), \tag{1.4}
\end{equation*}
$$

where the $s(n, k)$ are the Stirling numbers of the first kind defined by (see [3])

$$
\begin{equation*}
x(x-1)(x-2) \cdots(x-n+1)=\sum_{k=0}^{n} s(n, k) x^{k}, \tag{1.5}
\end{equation*}
$$

or by the following generating function

$$
\begin{equation*}
(\log (1+x))^{k}=k!\sum_{n=k}^{\infty} s(n, k) \frac{x^{n}}{n!} . \tag{1.6}
\end{equation*}
$$

2. Definition and Lemma

Definition. For a real or complex parameter x, the generalized Fibonacci numbers $F_{n}^{(x)}$, which are defined by

$$
\begin{equation*}
\left(\frac{1}{1-t-t^{2}}\right)^{x}=\sum_{n=0}^{\infty} F_{n}^{(x)} t^{n} . \tag{2.1}
\end{equation*}
$$

AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS
The numbers $F_{n-1}^{(1)}=F_{n}$ are the ordinary Fibonacci numbers.
Lemma. Let $n \geq k(n \in \mathbb{N})$ and

$$
\begin{equation*}
\delta(n, k):=\sum_{j=k}^{n}(-1)^{j-k}(n-j)!\binom{n}{j}\binom{j}{n-j} s(j, k) . \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
n!F_{n}^{(x)}=\sum_{k=1}^{n} \delta(n, k) x^{k} \tag{2.3}
\end{equation*}
$$

Proof. By (2.1) and (1.5), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} F_{n}^{(x)} t^{n}=\left(\frac{1}{1-t-t^{2}}\right)^{x}=\sum_{j=0}^{\infty}\binom{x+j-1}{j}\left(t+t^{2}\right)^{j} \\
= & \sum_{j=0}^{\infty}\binom{x+j-1}{j} t^{j} \sum_{n=0}^{j}\binom{j}{n} t^{n} \\
= & \sum_{j=0}^{\infty}\binom{x+j-1}{j} \sum_{n=j}^{2 j}\binom{j}{n-j} t^{n} \\
= & \sum_{n=0}^{\infty} \sum_{j=0}^{n}\binom{j}{n-j}\binom{x+j-1}{j} t^{n}, \tag{2.4}
\end{align*}
$$

which readily yields

$$
\begin{aligned}
& n!F_{n}^{(x)}=n!\sum_{j=0}^{n}\binom{j}{n-j}\binom{x+j-1}{j} \\
= & n!\sum_{j=0}^{n} \frac{1}{j!}\binom{j}{n-j}(x+j-1)(x+j-2) \cdots(x+1) x \\
= & \sum_{j=0}^{n}(n-j)!\binom{n}{j}\binom{j}{n-j} \sum_{k=1}^{j}(-1)^{j-k} s(j, k) x^{k} \\
= & \sum_{k=1}^{n} \sum_{j=k}^{n}(-1)^{j-k}(n-j)!\binom{n}{j}\binom{j}{n-j} s(j, k) x^{k}=\sum_{k=1}^{n} \delta(n, k) x^{k} .
\end{aligned}
$$

This completes the proof of Lemma.
Remark 1. Setting $n=1,2,3,4$ in Lemma, we get

$$
1!F_{1}^{(x)}=x, 2!F_{2}^{(x)}=3 x+x^{2}, 3!F_{3}^{(x)}=8 x+9 x^{2}+x^{3},
$$

and

$$
4!F_{4}^{(x)}=42 x+59 x^{2}+18 x^{3}+x^{4} .
$$

THE FIBONACCI QUARTERLY

3. Proof of the Theorem

Proof of the Theorem. By applying the Lemma, we have

$$
\begin{equation*}
k!\delta(n, k)=\left.n!\frac{d^{k}}{d x^{k}} F_{n}^{(x)}\right|_{x=0} \tag{3.1}
\end{equation*}
$$

On the other hand, it follows from (2.1) that

$$
\begin{equation*}
\left.\sum_{n=k}^{\infty} \frac{d^{k}}{d x^{k}} F_{n}^{(x)}\right|_{x=0} t^{n}=\left(\log \frac{1}{1-t-t^{2}}\right)^{k} \tag{3.2}
\end{equation*}
$$

Thus, by (3.1) and (3.2), we have

$$
\begin{equation*}
k!\sum_{n=k}^{\infty} \delta(n, k) \frac{t^{n}}{n!}=\left(\log \frac{1}{1-t-t^{2}}\right)^{k} \tag{3.3}
\end{equation*}
$$

By

$$
\frac{d}{d t} \log \frac{1}{1-t-t^{2}}=\frac{1+2 t}{1-t-t^{2}}=\sum_{n=0}^{\infty} F_{n}^{(1)} t^{n}+2 t \sum_{n=0}^{\infty} F_{n}^{(1)} t^{n}
$$

we have

$$
\begin{align*}
& \log \frac{1}{1-t-t^{2}}=\sum_{n=0}^{\infty} F_{n}^{(1)} \frac{t^{n+1}}{n+1}+2 \sum_{n=0}^{\infty} F_{n}^{(1)} \frac{t^{n+2}}{n+2}=\sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+1}}{n+1}+2 \sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+2}}{n+2} \\
& =\sum_{n=0}^{\infty} F_{n+1} \frac{t^{n+1}}{n+1}+2 \sum_{n=1}^{\infty} F_{n} \frac{t^{n+1}}{n+1}=\sum_{n=0}^{\infty}\left(F_{n+1}+2 F_{n} \frac{t^{n+1}}{n+1}=\sum_{n=0}^{\infty} L_{n+1} \frac{t^{n+1}}{n+1}\right. \\
& =\sum_{n=1}^{\infty} L_{n} \frac{t^{n}}{n} \tag{3.4}
\end{align*}
$$

which yields

$$
\begin{equation*}
k!\sum_{n=k}^{\infty} \delta(n, k) \frac{t^{n}}{n!}=\left(\sum_{n=1}^{\infty} \frac{L_{n}}{n} t^{n}\right)^{k}=\sum_{n=k}^{\infty}\left(\sum_{\substack{v_{1}, \cdots, v_{k} \in \mathbb{N} \\ v_{1}+\cdots+v_{k}=n}} \frac{L_{v_{1}} L_{v_{2}} \cdots L_{v_{k}}}{v_{1} v_{2} \cdots v_{k}}\right) t^{n} . \tag{3.5}
\end{equation*}
$$

By (3.5), we have

$$
\begin{equation*}
\delta(n, k)=\frac{n!}{k!} \sum_{\substack{v_{1}, \cdots, v_{k} \in \mathbb{N} \\ v_{1}+\cdots+v_{k}=n}} \frac{L_{v_{1}} L_{v_{2}} \cdots L_{v_{k}}}{v_{1} v_{2} \cdots v_{k}} . \tag{3.6}
\end{equation*}
$$

By (3.6) and (2.2), we may immediately deduce the following

$$
\begin{equation*}
\sum_{\substack{v_{1}, \cdots, v_{k} \in \mathbb{N} \\ v_{1}+\cdots+v_{k}=n}} \frac{L_{v_{1}} L_{v_{2}} \cdots L_{v_{k}}}{v_{1} v_{2} \cdots v_{k}}=\frac{k!}{n!} \sum_{j=k}^{n}(-1)^{j-k}(n-j)!\binom{n}{j}\binom{j}{n-j} s(j, k) . \tag{3.7}
\end{equation*}
$$

This completes the proof of the Theorem.

AN IDENTITY INVOLVING THE LUCAS NUMBERS AND STIRLING NUMBERS

Remark 2. Setting $k=1$ in (3.7) and noting that $s(j, 1)=(-1)^{j-1}(j-1)$! $(j \in \mathbb{N})$ (see [3]), we have

$$
\begin{equation*}
L_{n}=\sum_{j=1}^{n} \frac{n}{j}\binom{j}{n-j} \tag{3.8}
\end{equation*}
$$

Acknowledgement

This work was supported by the Guangdong Provincial Natural Science Foundation (No. 8151601501000002).

REFERENCES

[1] Y. Bugeaud, F. Luca, M. Mignotte, and S. Siksek, On Fibonacci Numbers with Few Prime Divisors, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 17-20.
[2] R. L. Duncan, Applications of Uniform Distribution to the Fibonacci Numbers, The Fibonacci Quarterly, 5.2 (1967), 137-140.
[3] C. Jordan, Calculus of Finite Differences, New York, Chelsea, 1965.
[4] L. Kupers, Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers, The Fibonacci Quarterly, 7.5 (1969), 465-466.
[5] G. Liu, Formulas for Convolution Fibonacci Numbers and Polynomials, The Fibonacci Quarterly, $\mathbf{4 0 . 4}$ (2002), 352-357.
[6] N. Robbins, Fibonacci Numbers of the Forms $p X^{2} \pm 1, p X^{3} \pm 1$, Where p is Prime, Applications of Fibonacci Numbers, Kluwer Acad. Publ., Dordrecht, 2 (1986), 77-88.

MSC2000: 11B39, 11B73
Department of Mathematics, Huizhou University, Huizhou, Guangdong, 516015, P. R. China

E-mail address: gdliu@pub.huizhou.gd.cn

