ON MELHAM'S SUM

KIYOTA OZEKI

Abstract

The sum $L_{1} \cdots L_{2 m+1} \sum_{k=1}^{n} F_{2 k}^{2 m+1}$ was first considered by Melham. He noticed that for small m it could be expressed as a polynomial in $F_{2 n+1}$. In this paper we give an explicit expansion for Melham's sum as a polynomial in $F_{2 n+1}$.

1. Introduction

Clary and Hemenway [1] began with the result

$$
\sum_{k=1}^{n} F_{2 k}^{3}=\frac{1}{4}\left(F_{2 n+1}^{3}-3 F_{2 n+1}+2\right)
$$

Based on the parity of n they were able to express the sum $\sum_{k=1}^{n} F_{2 k}^{3}$ as a product of Fibonacci and Lucas numbers. This prompted Melham to examine the sum $\sum_{k=1}^{n} F_{2 k}^{2 m+1}$ for $m=0,1,2,3,4$. In each case he noticed that the relevant sum could be expressed as a polynomial in $F_{2 n+1}$. For example $m=2$ yields

$$
\begin{equation*}
L_{1} L_{3} L_{5} \sum_{k=1}^{n} F_{2 k}^{5}=4 F_{2 n+1}^{5}-15 F_{2 n+1}^{3}+25 F_{2 n+1}-14 \tag{1}
\end{equation*}
$$

In private communication with Curtis Cooper [2], Melham suggested that it would be interesting to discover an explicit expansion for $L_{1} \cdots L_{2 m+1} \sum_{k=1}^{n} F_{2 k}^{2 m+1}$ as a polynomial in $F_{2 n+1}$. Wiemann and Cooper [4] analyzed the constant in this expansion and managed to prove a divisibility result. The purpose of this paper is to give the expansion first suggested by Melham.

2. The Main Result

Throughout this paper m and n represent nonnegative integers. We require the following result for the proof of the first lemma.

$$
\begin{equation*}
F_{m+n}=F_{m} L_{n}-(-1)^{n} F_{m-n} . \tag{2}
\end{equation*}
$$

The following lemma was proved by Melham with the use of Binet forms. For the sake of completeness, and by way of contrast, we prove it by induction.
Lemma 1. If m is an odd integer then

$$
L_{m} \sum_{k=1}^{n} F_{2 m k}=F_{m(2 n+1)}-F_{m} .
$$

Proof. The proof is by mathematical induction on n. For $n=1$, by the multiplication formula (2), we have

THE FIBONACCI QUARTERLY

$$
F_{2 m+m}=L_{m} F_{2 m}-(-1)^{m} F_{2 m-m} .
$$

Therefore, $L_{m} F_{2 m}=F_{3 m}-F_{m}$.
For $n+1$, we have

$$
L_{m} \sum_{k=1}^{n+1} F_{2 m k}=L_{m}\left(\sum_{k=1}^{n} F_{2 m k}+F_{2 m(n+1)}\right)=F_{m(2 n+1)}-F_{m}+F_{2 m(n+1)} L_{m}
$$

Again by (2)

$$
F_{2 m(n+1)+m}=F_{2 m(n+1)} L_{m}-(-1)^{m} F_{2 m(n+1)-m} .
$$

Therefore we obtain for $n+1$

$$
L_{m} \sum_{k=1}^{n+1} F_{2 m k}=F_{m(2 n+3)}-F_{m} .
$$

Lemma 2.

$$
F_{n}^{2 m+1}=\frac{1}{5^{m}} \sum_{j=0}^{m}(-1)^{j(n+1)}\binom{2 m+1}{j} F_{(2 m+1-2 j) n}
$$

Proof. Let α and β be the roots of the quadratic equation $x^{2}-x-1=0$, so $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

Using the Binet formula for Fibonacci numbers, we have

$$
\begin{aligned}
F_{n}^{2 m+1} & =\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)^{2 m+1} \\
& =\frac{1}{(\alpha-\beta)^{2 m+1}} \sum_{j=0}^{2 m+1}(-1)^{j+1}\binom{2 m+1}{j} \alpha^{j n} \beta^{(2 m+1-j) n} \\
& =\frac{1}{5^{m}(\alpha-\beta)} \sum_{j=0}^{m}(-1)^{j}\binom{2 m+1}{j}\left(\alpha^{(2 m+1-j) n} \beta^{j n}-\alpha^{j n} \beta^{(2 m+1-j) n}\right) \\
& =\frac{1}{5^{m}} \sum_{j=0}^{m}(-1)^{j}\binom{2 m+1}{j} \alpha^{j n} \beta^{j n}\left(\frac{\alpha^{(2 m+1-2 j) n}-\beta^{(2 m+1-2 j) n}}{\alpha-\beta}\right) \\
& =\frac{1}{5^{m}} \sum_{j=0}^{m}(-1)^{j(n+1)}\binom{2 m+1}{j} F_{(2 m+1-2 j) n} .
\end{aligned}
$$

We require the following result of Jennings [3].

Lemma 3.

$$
F_{(2 m+1) n}=\sum_{i=0}^{m}(-1)^{n(m+i)} 5^{i} \frac{2 m+1}{m+i+1}\binom{m+i+1}{2 i+1} F_{n}^{2 i+1} .
$$

Our main result will follow from the following theorem.

Theorem 1.

$$
\sum_{k=1}^{n} F_{2 k}^{2 m+1}=\frac{1}{5^{m}} \sum_{j=0}^{m} \frac{(-1)^{j}}{L_{2 m+1-2 j}}\binom{2 m+1}{j}\left(F_{(2 m+1-2 j)(2 n+1)}-F_{2 m+1-2 j}\right) .
$$

Proof. In Lemma 2 replace n by $2 k$ and sum from $k=1$ to n. This gives

$$
\sum_{k=1}^{n} F_{2 k}^{2 m+1}=\frac{1}{5^{m}} \sum_{j=0}^{m}(-1)^{j}\binom{2 m+1}{j} \sum_{k=1}^{n} F_{(2 m+1-2 j) 2 k}
$$

Theorem 1 now follows from Lemma 1.
Our main result follows.
Theorem 2. The expansion of $\sum_{k=1}^{n} F_{2 k}^{2 m+1}$ in powers of $F_{2 n+1}$ is given by

$$
\begin{gathered}
\sum_{i=0}^{m} F_{2 n+1}^{2 i+1} \sum_{j=0}^{m-i} \frac{(-1)^{m+i} 5^{i-m}(2 m-2 j+1)}{L_{2 m+1-2 j}(m-j+i+1)}\binom{2 m+1}{j}\binom{m-j+i+1}{2 i+1} \\
+\sum_{j=0}^{m} \frac{(-1)^{j+P} 5^{-m} F_{2 m+1-2 j}}{L_{2 m+1-2 j}}\binom{2 m+1}{j} .
\end{gathered}
$$

Proof. Using Lemma 3 we obtain an expansion for $F_{(2 m+1-2 j)(2 n+1)}$ and substitute this into the result stated in Theorem 1. This shows that $\sum_{k=1}^{n} F_{2 k}^{2 m+1}$ is equal to

$$
\begin{gathered}
\sum_{j=0}^{m} \sum_{i=0}^{m-j} \frac{(-1)^{m+i} 5^{i-m}(2 m-2 j+1)}{L_{2 m+1-2 j}(m-j+i+1)}\binom{2 m+1}{j}\binom{m-j+i+1}{2 i+1} F_{2 n+1}^{2 i+1} \\
+\sum_{j=0}^{m} \frac{(-1)^{j+1} 5^{-m} F_{2 m+1-2 j}}{L_{2 m+1-2 j}}\binom{2 m+1}{j} .
\end{gathered}
$$

Finally we reverse the order of summation in the double sum, and this establishes Theorem 2.

The reader can readily verify that (1) follows from Theorem 2. As a second example we have, for $m=3$,

$$
\begin{equation*}
L_{1} L_{3} L_{5} L_{7} \sum_{k=1}^{n} F_{2 k}^{7}=44 F_{2 n+1}^{7}-224 F_{2 n+1}^{5}+455 F_{2 n+1}^{3}-553 F_{2 n+1}+278 \tag{3}
\end{equation*}
$$

Acknowledgement

I would like to thank an anonymous referee for comments which have significantly improved the presentation of this paper.

THE FIBONACCI QUARTERLY

References

[1] S. Clary and P. D. Hemenway, On Sums of Cubes of Fibonacci Numbers, Applications of Fibonacci Numbers, 5 (1993), 123-136.
[2] C. Cooper, private communication.
[3] D. Jennings, Some Polynomial Identities for the Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 31.2 (1993), 134-137.
[4] M. Wiemann and C. Cooper, Divisibility of an F-L Type Convolution, Applications of Fibonacci Numbers, 9 (2004), 267-287.

MSC2000: 05A19, 11B39
Faculty of Engineering, Utsunomiya University, 7-1-2 Yotoh, Utsunomiya, Japan E-mail address: ozeki@cc.utsunomiya-u.ac.jp

