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Abstract. Let T : Z→ Z be defined by T (x) = 1
2x if x is even, and T (x) = 1

2 (3x + 1) if x
is odd. The 3x + 1 Conjecture asserts that every positive x has an iterate Tn(x) = 1. It is
known that Tn maps congruence classes with modulus 2n to those with modulus equal to
a power of 3. We describe properties of the image class residues and use those properties
to show that, under iteration by T , any congruence class with modulus of the form 2a3b

generates all integers not divisible by 3. This has negative implications for the study of
sufficient sets for the 3x + 1 Conjecture. The analysis also provides insight into a particular
permutation function associated with T .

1. Introduction

The 3x + 1 Problem concerns iteration of the following function defined on the set Z of
integers

T (x) =

{
x
2
, if x is even,

3x+1
2

, if x is odd.

A well-known conjecture, widely attributed to Lothar Collatz, states that for every x ≥ 1
the sequence of iterates {T k(x)}∞k=0 eventually reaches the cycle (2, 1). The 3x + 1 Problem,
to either prove or disprove this conjecture, remains unsolved after decades of attention and
appears to be intractable. Yet the problem continues to attract interest, and much has
been learned about some aspects of its perplexing nature. The works of Lagarias [7] and
Wirsching [11] contain significant foundational results on this problem. Chamberland [3]
provides an overview of different approaches to the problem and a survey of results from
many authors. Numerous additional references are available in the extensive bibliography
compiled by Lagarias [8].

We adopt the following notation throughout: The group Z/nZ is denoted by Zn and, for
0 ≤ r < n, [r]n denotes the congruence class of r modulo n.

In describing the T -iterates of a number x, it is often useful to introduce the parity vector
~v(x) = (v0(x), v1(x), . . .), where vi(x) is the {0, 1}-valued function defined by

vi(x) ≡ T i(x) (mod 2).

We also define

s0(x) = 0, and sn(x) = v0(x) + · · ·+ vn−1(x), n = 1, 2, . . . .

For n ≥ 1, sn(x) is then the number of odd numbers in {x, T (x), . . . , T n−1(x)}.
The relationship between an integer x and its parity vector ~v(x) seems central to an

understanding of the 3x + 1 Problem. Some aspects of this relationship were described by
Terras [10], and in more detail by Lagarias [7]; a fundamental result is that for n ≥ 1 the
function
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Qn(x) =
n−1∑
i=0

vi(x)2i (1)

is a permutation on Z2n . The cycle structure of this function was investigated by Bernstein
and Lagarias [2].

It is also well-known (see Terras [10, proof of Theorem 1.2]) that

T n(x + m2n) = T n(x) + m3sn(x). (2)

If 0 ≤ x ≤ 2n − 1, it follows from the definition of T that 0 ≤ T n(x) ≤ 3sn(x) − 1, so that
T n(x) is the least nonnegative residue of a congruence class modulo 3sn(x). To set the stage
for subsequent analysis, we therefore adopt the notation rn(x) := T n(x), and rewrite (2) as

T n(x + m2n) = rn(x) + m3sn(x), for 0 ≤ x < 2n. (3)

Equation (3) expresses the fact that T n maps the 2n distinct congruence classes of Z2n to
congruence classes with modulus 3sn(x). Some properties of T -iterates of the classes of Z2n

were described by Terras [10] and Everett [4], and used by them to establish density estimates
on the proportion of numbers less than a given number for which the 3x+1 Conjecture holds.
Lagarias [7] extended those results to obtain lower bounds on the growth rate of this density.

Our purpose is to describe properties of the residues rn(x), including some special period-
icity relationships that are expressed in Theorem 2. We then explore specific consequences
of those properties, one of which is the fact that any congruence class with modulus of the
form 2a3b generates, under iteration by T , all numbers x 6≡ 0 (mod 3) infinitely many times.
This is our main result and is presented in Theorem 3. We also show in Theorem 4 that the
structure of the permutation function Qn(x) is determined by the parities of the residues
r0(x), . . . , rn−1(x).

2. The 3x + 1 Congruence Class Triangle

The following useful lemma follows immediately from the definition of T , and may also be
viewed as a special case of (2).

Lemma 1. If xe is even, then T (x + xe) = T (x) + 3v0(x) xe

2
.

We are interested in describing the iteration under T of congruence classes with modulus
equal to a power of 3. A key to doing this is to replace ordinary divisions by 2 with divisions
modulo powers of 3, motivated by the fact that the multiplicative inverse of 2 (mod 3k) is

2−1
3k :=

1

2
(3k + 1).

Definition 1. For k ≥ 0 we define Hk : Z→ Z by H0(x) = 0 and, for k ≥ 1,

Hk(x) =

(
1

2
(3k + 1) · x

)
mod 3k.

Hk(x) therefore denotes the least nonnegative residue of a congruence class mod 3k. The
relationship of Hk to T is as follows.

Theorem 1. Let r and k be nonnegative integers. Then:
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(a) If r < 2 · 3k − (r mod 2)3k, then for every integer n,

T
(
r + 2n3k + (r mod 2)3k

)
= Hk(r) + n3k, (4)

(b) If r < 3k + (r mod 2)3k, then for every integer n,

T
(
r + (2n + 1)3k − (r mod 2)3k

)
= Hk+1(3r + 1) + n3k+1. (5)

Proof. If r = 2m < 2 · 3k, then

Hk(r) =

(
1

2
(3k + 1)(2m)

)
mod 3k

= m

=
1

2

(
r + (r mod 2)3k

)
.

On the other hand, if r = 2m + 1 < 3k, then

Hk(r) =

(
1

2
(3k + 1)(2m + 1)

)
mod 3k

=

(
m3k +

1

2
(3k + 2m + 1)

)
mod 3k

=
1

2
(3k + r) (since r < 3k)

=
1

2

(
r + (r mod 2)3k

)
.

In either case, r + (r mod 2)3k is even, and so

Hk(r) = T
(
r + (r mod 2)3k

)
.

Then, by Lemma 1,

T
(
r + (r mod 2)3k + 2n3k

)
= T

(
r + (r mod 2)3k

)
+ 30 · n3k

= Hk(r) + n3k,

which establishes (4). Next, if r = 2m ≤ 3k − 1, then

Hk+1(3r + 1) =

(
1

2
(3k+1 + 1)(6m + 1)

)
mod 3k+1

=

(
3k+13m +

1

2
(6m + 1 + 3k+1)

)
mod 3k+1

=
1

2
(6m + 1 + 3k+1) (since 6m + 1 ≤ 3(3k − 1) + 1 < 3k+1)

=
1

2

(
3(2m + 3k) + 1

)

= T (2m + 3k)

= T
(
r + 3k − (r mod 2)3k

)
.
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Similarly, if r = 2m + 1 ≤ 2 · 3k − 1, then T (r) = 3m + 2 < 3k+1, and

Hk+1(3r + 1) =

(
1

2
(3k+1 + 1)(6m + 4)

)
mod 3k+1

=
(
(3m + 2)3k+1 + (3m + 2)

)
mod 3k+1

= 3m + 2

= T (2m + 1)

= T
(
r + 3k − (r mod 2)3k

)
.

In either case,
Hk+1(3r + 1) = T

(
r + 3k − (r mod 2)3k

)
.

Again by Lemma 1, since
(
r + 3k − (r mod 2)3k

)
is odd, we have

T
(
r + 3k − (r mod 2)3k + 2n3k

)
= T

(
r + 3k − (r mod 2)3k

)
+ 31 · n3k

= Hk+1(3r + 1) + n3k+1.

This establishes (5), which completes the proof. ¤
The following corollary provides a preliminary description of the T -images of congruence

classes mod 3k.

Corollary 1. Let r and k be nonnegative integers, with r < 3k. Then

T ([r]3k) = [Hk(r)]3k ∪ [Hk+1(3r + 1)]3k+1 , (6)

with the even numbers in [r]3k being mapped onto [Hk(r)]3k and the odd numbers onto
[Hk+1(3r + 1)]3k+1.

Proof. The statement follows immediately from (4) and (5) by considering separately the
cases of even and odd values of r. ¤

From (6), a straightforward counting argument yields the following.

Corollary 2. T n([r]3k) consists of the union of 2n congruence classes, of which
(

n
i

)
have

modulus 3k+i, for each i = 0, . . . , n.

Corollary 2 with r = k = 0 shows that T n(Z) consists of 2n congruence classes, of which(
n
i

)
are of modulus 3i. When tracing the trajectory {T n(x)} of a particular x, Corollary 1

also shows that the modulus 3i of the class containing T n(x) increases only with iterates of
odd numbers, so that

i = sn(x),

in accordance with (2). We now index the least nonnegative residues of the congruence
classes of T n(Z) by rn,i,j where i = 0, . . . , n and j = 1, . . . ,

(
n
i

)
. (Note that

∑n
i=0

(
n
i

)
= 2n.)

By using (6), the residues may be described recursively as follows where, for notational
convenience, we define

(
n

n+1

)
= 0. We set

r0,0,1 = 0,

and, for n ≥ 0,{
rn+1,i,j = Hi(rn,i,j), i = 0, . . . , n, j = 1, . . . ,

(
n
i

)
,

rn+1,i,(n
i)+j = Hi(3rn,i−1,j + 1), i = 1, . . . , n + 1, j = 1, . . . ,

(
n

i−1

)
.

(7)
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As special cases, we have rn,0,1 = 0 and rn,n,1 = 3n − 1, for all n. With this method of
indexing, (6) now becomes

T ([rn,i,j]3i) = [rn+1,i,j]3i ∪ [rn+1,i+1,( n
i+1)+j]3i+1 . (8)

Equations (7) and (8) provide a complete description of the T -iterates of congruence
classes mod 3i. These congruence classes can be diagrammed in a triangular array as shown
in Figure 1, with even numbers iterating to the left and odd numbers to the right. We call
this array the 3x + 1 Congruence Class Triangle (CCT).

n = 0

n = 1
...

[r0,0,1]30 = Z

[r1,0,1]30 [r1,1,1]31

Q
Q

QQ

�
�

��

. .
. . . . . .

. . . .

�	evens @Rodds

[rn,i−1,1]3i−1

...
[r

n,i−1,( n

i−1)
]3i−1

[rn,i,1]3i

...
[r

n,i,(n

i
)]3i

[rn+1,i,1]3i

...
[r

n+1,i,(n

i
)]3i

[r
n+1,i,(n

i
)+1

]3i

...
[r

n+1,i,(n+1

i
)]3i

E
E
E
E
E
E
EE

E
E
E
E
E
E
EE

%
%

%% %
%

%%

Figure 1. Schematic of the 3x + 1 Congruence Class Triangle (CCT).

With the notation described above, (3) may be rewritten as

T n(xn,i,j + m2n) = T n(xn,i,j) + m3i

= rn,i,j + m3i,
(9)

where xn,i,j ∈ {0, 1, . . . , 2n − 1} and T n(xn,i,j) = rn,i,j < 3i. Figure 2 shows the CCT
through level n = 4 with the actual values of the residues. Also indicated parenthetically in
Figure 2 are the “seed” values xn,i,j from (9); the relationships expressed by (9) are therefore
represented in the diagram by entries of the form [rn,i,j]3i(xn,i,j).

The CCT as shown in Figure 2 reveals apparent periodicities of the residues along diagonals
i = constant. By computing residues for larger values of n, we may observe that the first
few cycles are

i = 1 : (2, 1)

i = 2 : (8, 4, 2, 1, 5, 7)

i = 3 : (26, 13, 20, 10, 5, 16, 8, 4, 2, 1, 14, 7, 17, 22, 11, 19, 23, 25).

This is explained by the following theorem, which is central to our subsequent analysis.
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Figure 2. The CCT with residue values and corresponding initial “seeds”.

Theorem 2. For i ≥ 1, each residue rn,i,j is a unit modulo 3i and, if Pi = 2 · 3i−1, any set
of the form

{rn,i,j, rn+1,i,j, . . . , rn+(Pi−1),i,j}
is the set of all units modulo 3i, which is a cyclic group under division by 2 (mod 3i).

Proof. We use (7) and the following two facts: (a) the units modulo 3i are the 2 ·3i−1 positive
integers less than 3i that are not divisible by 3, and (b) 2 is a primitive root modulo 3i, so
that successive multiplication or division of any unit modulo 3i by either 2 or 2−1

3i generates
the group of units modulo 3i, which is cyclic. (See, for example, Jones and Jones [5].)

As a special initial case we have T ([0]30) = [0]30 ∪ [2]31 , and so r1,1,1 = 2, which is a unit
modulo 31. For even r > 0, if r < 3i is a unit modulo 3i then so is Hi(r) =

(
2−1

3i r
)

mod 3i.
For odd r > 0, if r < 3i − 1 then 3r + 1 < 3i+1. Also, 3 does not divide 3r + 1. So 3r + 1
is a unit modulo 3i+1, and then

(
2−1

3i+1(3r + 1)
)

mod 3i+1 is also; i.e., Hi+1(3r + 1) is a unit
modulo 3i+1. We then have, from (7), that if rn,i,j is a unit modulo 3i, then rn+1,i,j is a unit
modulo 3i and rn+1,i+1,( n

i+1)+j is a unit modulo 3i+1. Since these are the only two residues

arising from one iteration of [rn,i,j]3i , it follows inductively that every residue rn,i,j is a unit
modulo 3i. Then also, since rn+1,i,j = (2−1

3i rn,i,j) mod 3i and 2−1
3i is a primitive root of 3i, the

set {rn,i,j, rn+1,i,j, . . . , rn+(Pi−1),i,j} is the cyclic group of units modulo 3i. ¤

3. Consequences of the CCT Structure

The structure of the CCT provides insight into a variety of properties of the 3x+1 iteration.
We examine two of these in detail.

3.1. Sufficient Sets of Vanishing Density. A natural area of inquiry involves the iden-
tification of sufficient sets for the 3x + 1 Problem, i.e., sets S with the property that if the
3x+1 Conjecture holds on S, then it holds for all positive integers. Korec and Znam [6] gave
a very concise proof that arithmetic progressions of the form {a + mpn}∞m=0 are sufficient
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when n is a positive integer, p is an odd prime, 2 is a primitive root modulo p2, and p - a.
This is significant in that the choice of m allows such sets to be chosen with arbitrarily small
density in Z+. Subsequently, Andaloro [1] showed that {1+16m}∞m=0 is sufficient, a case not
covered by Korec and Znam. All of these results have more recently been subsumed by the
remarkable result of Monks [9] that any nonconstant nonnegative arithmetic progression is
a sufficient set.

The typical approach to showing a set S is sufficient is to show that for any x ∈ Z+, there
is an integer y ∈ S that “merges” with x, in the sense that

T k(x) = T l(y) (10)

for some integers k and l. The properties of the CCT, however, provide a relatively simple
means to establish a more significant property for some arithmetic progressions.

We require the following well-known result, which is a direct consequence of the definition
of T .

Lemma 2. For every nonzero integer x, there exists a constant K such that T k(x) 6≡ 0
(mod 3) for all k ≥ K.

The set
I = {x ∈ Z : x 6≡ 0 (mod 3)}

is therefore an attracting invariant set for T on Z − {0}. Although the next results are
established for congruence classes, by restricting to positive integers these results imply that
arithmetic progressions with modulus of the form 2a3b are sufficient for the 3x+1 Conjecture.
However, we show that these sets have a much stronger property than the merging property
(10); under iteration by T any one of these sets generates every number in I infinitely many
times.

Lemma 3. Let 1 ≤ i1 ≤ i2 and let u1 and u2 be units modulo 3i1 and 3i2, respectively. Then
there exists a subset A of [u1]3i1 and an integer k > 0 such that T k(A) = [u2]3i2 .

Proof. First, note that by iterating (8),

Tm ([rn,i,j]3i) = Tm−1
(
[rn+1,i,j]3i ∪ [rn+1,i+1,( n

i+1)+j]3i+1

)

...

= [rn+m,i,j]3i ∪ · · · ∪ [rn+m,i+m,( n
i+1)+(n+1

i+2)+···+(n+m−1
i+m )+j]3i+m .

(11)

Next, by Theorem 2, we may choose m0 so that rm0,i1,1 = u1. Set m1 = i2 − i1. Then,
applying (11),

Tm1([u1]3i1 ) = Tm1([rm0,i1,1]3i1 )

= [rm0+m1,i1,1]3i1 ∪ · · · ∪ [rm0+m1,i1+m1,J1 ]3i1+m1 ,

where J1 is some integer. So there is a subset A1 of [u1]3i1 such that

Tm1(A1) = [rm0+m1,i1+m1,J1 ]3i1+m1

= [rm0+m1,i2,J1 ]3i2 .

Again using (11), we have that for any integer m2,

Tm1+m2(A1) = Tm2([rm0+m1,i2,J1 ]3i2 )

= [rm0+m1+m2,i2,J1 ]3i2 ∪ · · · ∪ [rm0+m1+m2,i2+m2,J2 ]3i2+m2 ,
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where J2 is some integer. By Theorem 2, we may choose m2 > 0 so that rm0+m1+m2,i2,J1 = u2.
So there is a subset A of A1 for which Tm1+m2(A) = [u2]3i2 . Setting k = m1 + m2 yields the
desired result. ¤

Theorem 3. Let a and b be nonnegative integers, not both 0, and let c be a positive integer
such that c < 2a3b. Let K be an integer such that TK(c) 6≡ 0 (mod 3), and set M =
max{a,K}. Then:

(a) For every integer i ≥ b + sM(c) and every integer u that is a unit modulo 3i there
exists a sequence of positive integers k1 < k2 < · · · and a collection of sets A1, A2, . . .
with [c]2a3b ⊇ A1 ⊇ A2 ⊇ · · · such that T km(Am) = [u]3i for m = 1, 2, . . ..

(b) For every x ∈ I, there exists a sequence k1 < k2 < . . . of positive integers and a
sequence {zm} ⊆ [c]2a3b such that T km(zm) = x for m = 1, 2, . . ..

Proof. We have

TM([c]2a3b) ⊇ TM([c]2M3b)

= TM
({c + n2M3b : n ∈ Z})

= {TM(c) + n3b+sM (c) : n ∈ Z} by (2),

= [TM(c)]3b+sM (c) .

So there exists a set A0 ⊆ [c]2a3b such that

TM(A0) = [TM(c)]3b+sM (c) .

Since M ≥ K, TM(c) 6≡ 0 (mod 3), by Lemma 2. Also, since c < 2a3b and M ≥ a,
TM(c) < 3b+sM (c). Thus, TM(c) is a unit modulo 3b+sM (c). By Lemma 3, there exists
B0 ⊆ [TM(c)]3b+sM (c) and an integer m0 > 0 such that Tm0(B0) = [u]3i . Then

TM+m0(A0) = Tm0
(
[TM(c)]3b+sM (c)

)

⊇ Tm0(B0)

= [u]3i .

So there exists A1 ⊆ A0 such that T k1(A1) = [u]3i , where k1 = M + m0 > 0.
Proceeding inductively, if T kn(An) = [u]3i for some n, we may reapply Lemma 3 with

i1 = i2 = i to find that there exists Bn ⊆ T kn(An) and an integer mn > 0 such that
Tmn(Bn) = [u]3i . We then have

T kn+mn(An) = Tmn
(
T kn(An)

)

⊇ Tmn(Bn)

= [u]3i .

So there is a subset An+1 of An for which T kn+mn(An+1) = [u]3i . Thus, T kn+1(An+1) = [u]3i ,
where kn+1 = kn + mn > kn. Part (a) follows by induction.

For (b), we note that any positive x ∈ I is a unit modulo 3i for sufficiently large i. For
negative x ∈ I, we may choose i large enough so that w = x + 3i is positive. Then w is a
unit modulo 3i and x ∈ [w]3i . So in either case, we may choose integers i and u such that u
is a unit modulo 3i and x ∈ [u]3i . The sets Am and integers km from part (1) then have the
property that T km(Am) contains x. Thus, there exists zm ∈ Am such that T km(zm) = x. ¤
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Remark 1. The statement of Theorem 3(a) encompasses many well-known congruence
identities for the 3x + 1 Problem. For example, the familiar fact that T 3(4m + 1) = T (m)
when m is odd is expressible as T (2n+1) = T 3(8n+5) = T 5(32n+21) = · · · = 3n+2, from
which T ([1]21) = T 3([5]23) = T 5([21]25) = · · · = [2]31 . This relationship can be identified in
Figure 2 from the entries [2]31(1) at level n = 1, [2]31(5) at level n = 3, etc. Similar identities
can be obtained from further inspection of the CCT periodicities as expressed in Theorem
2. Theorem 3(a), which relies upon these periodicities, shows that such relationships are
ubiquitous.

Remark 2. The identification of sufficient sets with the merging property (10) has offered
the appealing prospect of being able to address the 3x+1 Problem by restricting attention to
an arbitrarily small subset of the integers. Theorem 3(b), however, diminishes this hope by
showing that many sufficient sets of small density are “sufficient” only in a most undesirable
way – they simply regenerate the entire invariant set I. It remains an interesting open
question as to whether arithmetic progressions with modulus other than 2a3b also have this
property.

3.2. Terras’ Permutation Function. We now refer back to the permutation function
Qn(x) from (1), which relates a number x to its parity vector ~v(x):

Qn(x) =
n−1∑
i=0

vi(x)2i.

For x < 2n, the binary bits bi(x) ∈ {0, 1} are defined by

x =
n−1∑
i=0

bi(x)2i,

with bi(x) = 0 for i ≥ n. We also define the k-bit predecessor of x by

pk(x) := x− 2k
⌊ x

2k

⌋
,

where bxc denotes the floor (or greatest integer) function. So p0(x) = 0 and for k ≥ 1,

pk(x) =
k−1∑
i=0

bi(x)2i.

As described by Lagarias [7], for n = 1 and n = 2, Qn(x) is the identity map on Z2n , since
in these cases vi(x) = bi(x) for i = 0, . . . , n − 1. The first nontrivial permutation occurs
for n = 3, where Q3(1) = 5 and Q3(5) = 1. Examination of the CCT in Figure 2 shows
that this permutation is due to the odd parity of the residue r2,1,1 = 1. The next theorem
confirms that the permutation function Qn is determined by the parities of the residues at
levels 0, 1, . . . , n− 1 in the CCT.

Theorem 4. Let n ≥ 0 be given. For 1 ≤ x < 2n, define the {0, 1}-valued functions
ρk(x), bk(x), and vk(x) for k = 0, . . . , n by

x =
n∑

k=0

bk(x)2k,

vk(x) ≡ T k(x) (mod 2), (12)
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ρk(x) ≡ T k(pk(x)) (mod 2), (13)

where pk(x) = x− 2k
⌊

x
2k

⌋
. Then

vk(x) ≡ bk(x) + ρk(x) (mod 2).

Proof. Since b0(x) = v0(x) and ρ0(x) = 0, the statement is true for k = 0. For k ≥ 1 we use
the fact from Terras [10] that vi(y + m2k) = vi(y) for i = 0, . . . , k − 1, from which it follows
that sk(y + m2k) = sk(y). In particular,

sk(x) = sk

(
pk(x) +

⌊ x

2k

⌋
2k

)
= sk(pk(x)).

We then have
T k(x) = T k

(
pk(x) + 2k

⌊ x

2k

⌋)

= T k (pk(x)) + 3sk(pk(x))
⌊ x

2k

⌋
by (2),

so that
T k(x) = T k (pk(x)) + 3sk(x)

⌊ x

2k

⌋
. (14)

Since pk(x) < 2k, T k(pk(x)) < 3sk(x) (as in (2)), so T k(pk(x)) is the residue of the congruence
class mod 3sk(x) that contains T k(x). We now compare parities of the terms in (14), using
(12), (13), and the fact that(

3sk(x)
⌊ x

2k

⌋)
≡

⌊ x

2k

⌋
≡ bk (mod 2).

We then obtain vk(x) ≡ ρk(x) + bk(x) (mod 2). ¤
By considering the vectors ~v(x) = {v0(x), v1(x), . . .}, ~b(x) = {b0(x), b1(x), . . .} and ~ρ(x) =

{ρ0(x), ρ1(x), . . .}, the conclusion of Theorem 4 may be written as ~v = ~b ⊕ ~ρ, where ⊕
denotes the bitwise-XOR operator. Note that the ⊕ operator has the property that this

equation remains true if the vectors ~v,~b, and ~ρ are permuted. This equation gives a concise
description of some important features of the 3x + 1 iteration. First, since ρi is nonzero
precisely when bi 6= vi, the permutation function Qn is determined by ~ρ. Also, if x < 2n,
then bi = 0 for i ≥ n, so that vi = ρi for i ≥ n, which reflects the known fact that
the residues eventually become equal to the iterates themselves, as described by (14) when
2k > x. Theorem 4 suggests that greater insight into the nature of Qn may be possible from
further investigation of patterns in the parities of the CCT residues.
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