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ABSTRACT. This paper provides a combinatorial proof of an identity which arose in the
work of Paul Bruckman. This identity is given by Equation (1.4). We then proceed to
generalize Bruckman’s Identity via Lagrange Interpolation.

1. INTRODUCTION

In this paper we study some interesting binomial identities arising from partial fraction
expansions. Some of the formulas are old and some apparently new. Our remarks are in-
spired by a question raised by Paul Bruckman [1] who posed the following problem:

Bruckman’s Problem: Show that
N
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is valid for n =1,2,..., V.
We first rephrase the problem by using the binomial identity

(a0)0) - ()0 4

so that Equation (1.1) may be rewritten in the form
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py k k (2k—1)(k+n) 2n+1
valid forn =1,2,..., N.
With a slight change in notation, let x be a real or complex number other than —1, -2, ..., —n.

Then, Bruckman’s question can be proposed as follows.
Restatement of Bruckman’s Problem: Show that

S (e s

k=1

is equivalent to the equation (z — 1)(x — 2)...(x —n) = 0.

The purpose of this paper is to verify Equation (1.4). This verification is done in Section
2. We then use Section 3 to discuss a generalization of Equation (1.4). The existence of
this generalization relies on the partial fraction decomposition of the Lagrange Interpolation
Theorem.
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2. PROOF OF BRUCKMAN’S PROBLEM

Our proof of Equation (1.4) utilizes the creative telescoping techniques of Wilf and Zeil-
berger [3]. In order to make use of creative telescoping, we analyzed the left hand sum in
Equation (1.4) for small values of n. By inspecting the calculations results, we formed the
following conjecture.

(22 +1) nl(—1>’“ (Z) (n Z k) (2k — 1];(k + )

(x —1)(z—2)..(x — n)
(z4+1D(x+2)..(x+n)

Conjecture 2.1.

=2n+1)—(-1)" (2.1)
Thus, if we could prove Conjecture 2.1 we will also have proven Equation (1.4).

In order to prove Conjecture 2.1, we use Zeilberger’s Algorithm (Chapter 6 of [3]), to find
a recurrence relation for the summand term F(n, k) = (—1)*! (Z) (”Zk) m By using
the ct command in the Ekhad Maple package [3], we find that F'(n, k) obeys the following
second order recurrence, namely

(n+2)(z—n—1)Fnk)+@2n* +x+6n+4)F(n+1,k)

2.2
—(n+1)(x+n+2)F(n+2,k)=G(nk+1)—G(n,k), (22)
where 2k — 1)(2k — 1)(x + k)
— —1)(z +
= F . 2.

Gk = ek L h) (23)

By summing both sides of Equation (2.2) with respect to k, we find that
(n+2)(z—n—1)f(n)+2n*+z+6n+4)f(n+1) (2.4)

—(n+1)(z+n+2)f(n+2)=0,

where

fn) =z +1)> F(n,k).

Note that f(n) is the left hand side of Equation (2.1). Thus, if we can show that the right
side of Equation (2.1) also obey the second order recurrence given by Equation (2.4), then by
uniqueness of recurrence solution, we will have proven Conjecture 2.1 and thus, have proven
Equation (1.4).

Fortunately, it is an easy computer algebra exericse in Maple to show that (2n 4+ 1) —

(—1)”%1;%;;3813 satifies Equation (2.4). Therefore, we know Conjecture 2.1 is true via

creative telescoping.

3. GENERALIZATION OF BRUCKMAN’S PROBLEM

Bruckman [1] expressed curiosity as to what to do with the 2k — 1 in the denominator of
Equation (1.3). As a matter of fact the 2k — 1,2n 4 1 and 2z + 1 in Equation (1.4) may be
made to disappear in a way that makes it possible to conjecture even more. Noting that
1
2 1 2 + 1 1 ("*2)
= —r— (== om4+1=~n/
%—1 —1+k ; —oolg) e (")

n

(3.1)
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we rewrite Equation (1.4) in the form

(o) S ()T St e (5 o

k=1

One is then tempted to replace —% by an arbitrary number y and assert the conjecture that

e () () e E; - E:ﬁ; (3.3

k=1 n

for all n > 1 and arbitrary complex z and y not equal to —1, -2, ..., —n.
This turns out to be a true consequence of a partial fraction expansion coming from the
Lagrange Interpolation Theorem.

Remark 3.1. Use of relations (3.1), (5.2), and (3.83) is an old device that has been used by
Gould for many similar partial fraction examples.

A well-known partial fraction expansion (2], Equation (Z.12)) is

1
3.4
l_Izlk;—i_uZ ZHZ*l Uj )k+uj ( )
i# ]

where f(x) is a polynomial of degree < m + 1. Partial fraction expansions of this type are
derived in Schwatt [4].

Using this we find

i(_l)k(n) <n+k> f(k)
=0 k k H:il(k + ul)

B Zm: i(_l)k n\ /n+k 1

B pus Llul uj)ko k k) k+u;
The inner summation here may be found by setting y = 0 in Equation (3.3), which yields

S0 () (") - 5 0

k=0

(3.5)

Thus, we find using this with Equation (3.5) that

- L)

n

g(_l)k (Z) (n Z k) T ( k + u;) Z H = uj) — () (3.7)

This then is an m-term generalization of the basic series con51dered by Bruckman.
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