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Abstract. In this paper, we obtain some explicit congruences for Euler numbers modulo
an odd prime power in an elementary way.

1. Introduction

The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are usually defined
by the exponential generating functions:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
and

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

The rational numbers Bn = Bn(0) and integers En = 2nEn(1/2) are called Bernoulli numbers
and Euler numbers, respectively. Here are some well-known identities of Bn(x) and En(x)
(see [11]):

Bn(1− x) = (−1)nBn(x), Bn(x + y) =
n∑

k=0

(
n

k

)
Bn−k(y)xk, (1.1)

En(1− x) = (−1)nEn(x), En(x + y) =
n∑

k=0

(
n

k

)
En−k(y)xk. (1.2)

In particular,

Bn(x) =
n∑

k=0

(
n

k

)
Bn−kx

k, En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

, (1.3)

and
Bn(x + 1)−Bn(x) = nxn−1, En(x + 1) + En(x) = 2xn. (1.4)

Meanwhile, there exists a close connection between Bernoulli polynomials and Euler poly-
nomials that can be expressed in the following way:

En(x) =
2n+1

n + 1

(
Bn+1

(
x + 1

2

)
−Bn+1

(
x

2

))
. (1.5)

Bernoulli and Euler numbers and polynomials are of particular importance in number the-
ory because they have connections with p-adic analysis and ideal class groups of cyclotomic
fields (for example [9], p. 100–109 and [13], p. 29–86). It is also very fascinating and quite
useful to investigate arithmetic properties of these numbers and polynomials. For the work
in this area the interested readers may consult [2]. Here we give two classical results (see [4],
p. 233–240 or [12]).
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Kummer’s congruences. Let p be an odd prime and n a positive integer. Then
(1) E(p−1)+2n ≡ E2n (mod p).
(2) If p− 1 - 2n then

B(p−1)+2n

(p− 1) + 2n
≡ B2n

2n
(mod p).

von Standt-Clausen Theorem. If n is a positive integer, then

B2n +
∑

p−1|2n

1

p
is an integer,

where the sum is over all primes p such that p− 1 | 2n.
Recently, some researchers considered the congruences for Euler numbers, and obtained

some beautiful results. For example, let p be an odd prime, Zhang [15] showed that

Ep−1 ≡ 1 + (−1)(p+1)/2 (mod p). (1.6)

In 2002, Wagstaff [12] gave a more general result: let p be an odd prime and a a positive
integer, then En ≡ 0 or 2 (mod pa+1) according to p ≡ 1 or 3 (mod 4) where n is a positive
integer such that (p − 1)pa | n. Wagstaff’s proof depends on the result of Johnson [6]:
ep(p

m/m!) > (p − 2)m/(p − 1) where p is a prime, m is a positive integer, and ep(n) = r
means pr | n but pr+1 - n. In 2004, Chen [1] derived that

Ekφ(pa)+2n ≡
(
1− (−1)(p−1)/2p2n

)
E2n (mod pa), (1.7)

where k is a positive integer, n is a non-negative integer, pa is an odd prime power with
a > 1, and φ(n) is the Euler function. In 2008, Jakubec [5] established a beautiful connection
between Euler numbers and Fermat quotients, where the Euler numbers satisfy that for any
prime p with p ≡ 1 (mod 4),

Ep−1 ≡ 0 (mod p) and 2Ep−1 ≡ E2p−2 (mod p2). (1.8)

In this paper, using an elementary way, we obtain some explicit congruences for Euler
numbers modulo an odd prime power. From now on we always let {x} be the fractional part
of x. For a given prime p, Zp denotes the set of rational p-integers (those rational numbers
whose denominators are not divisible by p). If x1, x2 ∈ Zp and x1 − x2 ∈ pnZp, then we say
that x1 is congruent to x2 modulo pn and denote this relation by x1 ≡ x2 (mod pn). A good
introduction to p-adic numbers can be found in [8].

2. Several Lemmas

We begin with a useful identity involving Bernoulli polynomials.

Lemma 2.1. Let n and m be positive integers, then for any integers r and k with k > 0 we
have

n−1∑
x=0

m|x−r

xk =
mk

k + 1

(
Bk+1

(
n

m
+

{
r − n

m

})
−Bk+1

({
r

m

}))
.
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Proof. It is easy to see that

Bk+1

(
n

m
+

{
r − n

m

})
−Bk+1

({
r

m

})

=
n−1∑
x=0

(
Bk+1

(
x + 1

m
+

{
r − x− 1

m

})
−Bk+1

(
x

m
+

{
r − x

m

}))

=





n−1∑
x=0

(
Bk+1

(
x
m

+

{
r−x
m

})
−Bk+1

(
x
m

+

{
r−x
m

}))
= 0, if m - x− r;

n−1∑
x=0

(
Bk+1

(
x
m

+ 1

)
−Bk+1

(
x
m

))
, if m | x− r.

Thus, by (1.4) we can easily deduce the result of Lemma 2.1. ¤
The case m = 1 in Lemma 2.1 is a well-known fact (see [4], p. 231). The consideration

to establish the relation in Lemma 2.1 stems from Lemma 3.1 of Sun [10]. Here, we only
consider a special case.

Lemma 2.2. Let p be a prime and m a positive integer. Then
(1) pm/(m + 1) is a p-integer, and if m > 2 then pm/(m + 1) ∈ pZp.
(2) pBm is a p-integer. In particular, if p− 1 - m then Bm/m is a p-integer.

Proof. See [4], p. 235–238. ¤
Lemma 2.3. Let p be an odd prime, a and k be positive integers. Assume that x1, x2 ∈ Zp

and x1 ≡ x2 (mod pa). If p− 1 - k then we have

Bk+1(x1)

k + 1
≡ Bk+1(x2)

k + 1
(mod pa).

Proof. By (1.1), we have

Bk+1(x1)−Bk+1(x2)

k + 1
=

k+1∑
r=1

(
k

r − 1

)
Bk+1−r(x2)

(x1 − x2)
r

r

=
k+1∑
r=1

(
k

r − 1

)
par−rpBk+1−r(x2)

(
x1 − x2

pa

)r
pr−1

r

=
pakBk(x2)

k

(
x1 − x2

pa

)

+
k+1∑
r=2

(
k

r − 1

)
par−rpBk+1−r(x2)

(
x1 − x2

pa

)r
pr−1

r
. (2.1)

For any non-negative integer m, by (1.1) and Lemma 2.2 we obtain that

pBm(x2) =
m∑

r=0

(
m

r

)
pBm−rx

r
2 ∈ Zp.

It follows that
(
Bk+1(x1)−Bk+1(x2)

)
/(k +1) ∈ Zp. Assume that n is a positive integer such

that n ≡ x2 (mod p), then by the fact
∑n−1

r=0 rk−1 = (Bk(n)−Bk)/k we have

Bk(x2)−Bk

k
=

Bk(x2)−Bk(n)

k
+

Bk(n)−Bk

k
∈ Zp.
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So if p− 1 - k, then by Lemma 2.2 we obtain that Bk(x2)/k ∈ Zp. It follows from (2.1) that
if p− 1 - k then

Bk+1(x1)−Bk+1(x2)

k + 1
∈ paZp.

This completes the proof of Lemma 2.3. ¤

Lemma 2.4. Let p be an odd prime, a and k be positive integers. Let m, t be integers with
m > 1 and p - m. If p− 1 - k then we have

∑
r integer

(t−1)pa

m
<r6 tpa

m

rk ≡ (−1)k

k + 1

(
Bk+1

({
(t− 1)pa

m

})
−Bk+1

({
tpa

m

}))
(mod pa).

Proof. Observe that

pa−1∑
x=0

m|x−tpa

xk =
∑

r integer
06tpa−rm<pa

(tpa − rm)k =
∑

r integer
(t−1)pa

m
<r6 tpa

m

(tpa − rm)k

≡ (−m)k
∑

r integer
(t−1)pa

m
<r6 tpa

m

rk (mod pa).

Taking r = tpa and n = pa in Lemma 2.1, the result follows from Lemma 2.3. ¤

Lemma 2.5. Let m be an odd integer with m > 1. Then for any non-negative integer n we
have

En ≡
m−1∑

l=0

(−1)l(2l + 1)n (mod m).

Proof. Substituting m + 1/2 for x in (1.3) we have

2nEn

(
m +

1

2

)
= 2n

n∑

k=0

(
n

k

)
Ek

2k
mn−k ≡ En (mod m). (2.2)

Note that

En

(
1

2

)
+En

(
m +

1

2

)
=

m−1∑

l=0

(
(−1)lEn

(
l +

1

2

)
−(−1)l+1En

(
l + 1 +

1

2

))
.

It follows from (1.4) that

En

(
1

2

)
+En

(
m +

1

2

)
= 2

m−1∑

l=0

(−1)l

(
l +

1

2

)n

.

By the fact En = 2nEn(1/2), we obtain that

En + 2nEn

(
m +

1

2

)
= 2

m−1∑

l=0

(−1)l(2l + 1)n. (2.3)
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Combining (2.2) and (2.3), we have

En ≡
m−1∑

l=0

(−1)l(2l + 1)n (mod m).

Thus, the proof of Lemma 2.5 is completed. ¤

3. Statement of Results

Since Euler numbers with odd subscripts vanish, E2n+1 = 0 for all non-negative integer n,
it suffices to consider the case E2n. For convenience, in this section we always let φ(n) be
the Euler function, and define the Legendre symbol (m

p
), where p is an odd prime and m is

any integer, by

(
m

p

)
=





1, if m is a quadratic residue modulo p,

−1, if m is a quadratic non-residue modulo p,

0, if p | m.

Theorem 3.1. Let p be an odd prime with p ≡ 1 (mod 4) and a a positive integer. Then
we have

Eφ(pa)/2 ≡ 4

p−1
4∑

r=1

(
r

p

)
≡

p−1∑

l=0

(−1)l

(
2l + 1

p

)
(mod pa).

Proof. Since Bernoulli numbers with odd subscripts vanish, B2n+1 = 0 for any positive integer
n, then taking m = 4, t = 1 and k = φ(pa)/2 in Lemma 2.4 we have

pa−1
4∑

r=1

r
φ(pa)

2 ≡ −1

φ(pa)/2 + 1
Bφ(pa)/2+1

(
1

4

)
(mod pa).

By (1.5) and (1.1), we obtain

E2n = 22nE2n

(
1

2

)
= − 24n+2

2n + 1
B2n+1

(
1

4

)
.

It follows from Fermat’s Little Theorem that

Eφ(pa)/2 ≡ 4

pa−1
4∑

r=1

r
φ(pa)

2 (mod pa).

By the Euler criterion (see [3], Theorem 83), there exists an integer s such that for any
integer r,

r
p−1
2 = sp +

(
r

p

)
. (3.1)

Thus,

r
φ(pa)

2 =

(
sp +

(
r

p

))pa−1

≡
(

r

p

)pa−1

≡
(

r

p

)
(mod pa). (3.2)

Hence,

Eφ(pa)/2 ≡ 4

pa−1
4∑

r=1

(
r

p

)
(mod pa). (3.3)
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On the other hand, taking n = φ(pa)/2 and m = pa in Lemma 2.5, then by (3.2) we have

Eφ(pa)/2 ≡
pa−1∑

l=0

(−1)l

(
2l + 1

p

)
(mod pa).

By the properties of residue system, it is clear that

pa−1∑

l=0

(
2l + 1

p

)
= pa−1

p−1∑

l=0

(
2l + 1

p

)
= 0.

Thus,

Eφ(pa)/2 ≡
pa−1∑

l=0

(
(−1)l − 1

)(2l + 1

p

)
= −2

pa−1
2∑

l=1

(
4l − 1

p

)
(mod pa). (3.4)

Note that
pa−1

2∑

l=1

(
4l − 1

p

)
=

pa−p
2∑

l=1

(
4l − 1

p

)
+

pa−1
2∑

l= pa−p
2

+1

(
4l − 1

p

)

=

p−1
2∑

l=1

(
4((pa − p)/2 + l)− 1

p

)
=

p−1
2∑

l=1

(
4l − 1

p

)
= −1

2

p−1∑

l=0

(−1)l

(
2l + 1

p

)
,

and
pa−1

4∑
r=1

(
r

p

)
=

pa−p
4∑

r=1

(
r

p

)
+

pa−1
4∑

r= pa−p
4

+1

(
r

p

)
=

p−1
4∑

r=1

(
(pa − p)/4 + r

p

)
=

p−1
4∑

r=1

(
r

p

)
.

The desired result follows immediately from (3.3) and (3.4). ¤

Remark 3.1. For a discriminant d let h(d) be the class number of the quadratic field Q(
√

d)
(Q is the set of rational numbers). If p is a prime of the form 4m + 1, Yuan [14], Lemma
2.3, showed that

2h(−4p) ≡
p−1∑

l=0

(−1)l

(
2l + 1

p

)
6≡ 0 (mod p).

So from Theorem 3.1, we can obtain that Eφ(pa)/2 6≡ 0 (mod pa). This gives a different
proof of a general conjecture on Euler numbers from Zhang and Xu [16]. Moreover, we also
ignore the identity involving Euler numbers (see [7], Lemma 1) which is the key to prove the
conjecture by Yuan, Zhang and Xu, respectively.

Remark 3.2. In [11], Raabe proved a useful theorem that
∑m−1

r=0 Bn

(
(x+r)/m

)
= m1−nBn(x)

for any positive integer m. Taking x = 0, 1/2 and m = 2 in Raabe’s Theorem, it follows
from (1.1) that B2n(3/4) = B2n(1/4) = (1−22n−1)B2n/24n−1. If p is a prime such that p ≡ 3
(mod 4), then in a similar consideration to (3.3) we have

pa−3
4∑

r=1

(
r

p

)
≡ −2Bφ(pa)/2+1

φ(pa) + 2

(
1− (1− 2

φ(pa)
2 )

2φ(pa)+1

)
(mod pa).
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In particular, if a = 1 then by Fermat’s Little Theorem we have

p−3
4∑

r=1

(
r

p

)
≡

(
−1−

(
2

p

))
B(p+1)/2 (mod p).

In the same way, we can obtain the Corollary of [4], p. 238,

p−1
2∑

r=1

(
r

p

)
≡ −2

(
2−

(
2

p

))
B(p+1)/2 (mod p).

Theorem 3.2. Let n be a positive integer and p an odd prime. Then

E(p−1)+2n ≡ E2n (mod p).

Proof. By Lemma 2.5, we have

E2n ≡
p−1∑

l=0

(−1)l(2l + 1)2n (mod p),

and

E(p−1)+2n ≡
p−1∑

l=0

(−1)l(2l + 1)(p−1)+2n (mod p).

It follows from Fermat’s Little Theorem that

E(p−1)+2n ≡
p−1∑

l=0

(−1)l(2l + 1)2n ≡ E2n (mod p).

This completes the proof of Theorem 3.2. ¤

Theorem 3.3. Let p be an odd prime, a and k be positive integers. Then

Ekφ(pa+1) ≡
{

0 (mod pa+1), if p ≡ 1 (mod 4),

2 (mod pa+1), if p ≡ 3 (mod 4).

Proof. By Lemma 2.5 and (3.1), we have

Ekφ(pa+1) =

pa+1−1∑

l=0

(−1)l(2l + 1)kφ(pa+1) =

pa+1−1∑

l=0

(−1)l

(
sp +

(
2l + 1

p

))2kpa

≡
pa+1−1∑

l=0

(−1)l

(
2l + 1

p

)2

(mod pa+1).
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Thus,

Ekφ(pa+1) ≡
p−3
2∑

l=0

(−1)l +

3p−3
2∑

l= p+1
2

(−1)l +

3p−3
2

+p∑

l= p+1
2

+p

(−1)l + · · ·+
3p−3

2
+p(pa−2)∑

l= p+1
2

+p(pa−2)

(−1)l

+

p−1+p(pa−1)∑

l= p+1
2

+p(pa−1)

(−1)l =

p−3
2∑

l=0

(−1)l +

3p−3
2∑

l= p+1
2

(
(−1)l + (−1)p+l

+(−1)2p+l · · ·+ (−1)p(pa−2)+l

)
+

p−1∑

l= p+1
2

(−1)p(pa−1)+l

=

p−3
2∑

l=0

(−1)l +

p−1∑

l= p+1
2

(−1)l =

{
0, if p ≡ 1 (mod 4),

2, if p ≡ 3 (mod 4).

This completes the proof of Theorem 3.3. ¤
We obtain Theorems 3.4 and 3.5 using work from Jakubec [5]. Here we give two more

general congruences for Euler numbers.

Theorem 3.4. Let p be an odd prime, a and k be positive integers. Then

Ekφ(pa) − kpa−1Ep−1 ≡
{

0 (mod pa+1), if p ≡ 1 (mod 4),

2− 2kpa−1 (mod pa+1), if p ≡ 3 (mod 4).

Proof. By Lemma 2.5, we have

Ekφ(pa) ≡
pa+1−1∑

l=0

(−1)l(2l + 1)kφ(pa) (mod pa+1),

and

Ep−1 ≡
pa+1−1∑

l=0

(−1)l(2l + 1)p−1 (mod pa+1).

So from (3.1), we obtain

Ekφ(pa) − kpa−1Ep−1

≡
pa+1−1∑

l=0

(−1)l

[(
sp +

(
2l + 1

p

))2kpa−1

−kpa−1

(
sp +

(
2l + 1

p

))2]

≡ (1− kpa−1)

pa+1−1∑

l=0

(−1)l

(
2l + 1

p

)2

(mod pa+1). (3.5)

By Theorem 3.3, we complete the proof of Theorem 3.4. ¤
Theorem 3.5. Let p be an odd prime, a and k be positive integers. Then for any non-
negative integer n we have

Ekφ(pa)+2n − kpa−1Ep−1+2n ≡ (1− kpa−1)
(
1− (−1)

p−1
2 p2n

)
E2n (mod pa+1).
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Proof. For the case n = 0, the result is immediate by Theorem 3.4. Now, we consider n > 1.
By Lemma 2.5 and (3.5), we have

Ekφ(pa)+2n − kpa−1Ep−1+2n ≡ (1− kpa−1)

pa+1−1∑

l=0

(−1)l(2l + 1)2n

(
2l + 1

p

)2

= (1− kpa−1)

(pa+1−1∑

l=0

(−1)l(2l + 1)2n − p2n

pa−1∑

l=0

(−1)
p−1
2

+lp(2l + 1)2n

)

= (1− kpa−1)

(pa+1−1∑

l=0

(−1)l(2l + 1)2n

−(−1)
p−1
2 p2n

pa−1∑

l=0

(−1)l(2l + 1)2n

)
(mod pa+1).

By Lemma 2.5, there exist integers s and t such that

pa+1−1∑

l=0

(−1)l(2l + 1)2n = E2n + spa+1 and

pa−1∑

l=0

(−1)l(2l + 1)2n = E2n + tpa.

It follows that

Ekφ(pa)+2n − kpa−1Ep−1+2n ≡ (1− kpa−1)
(
1− (−1)

p−1
2 p2n

)
E2n (mod pa+1).

This completes the proof of Theorem 3.5. ¤
Using a similar proof of Theorem 3.5, we can easily obtain the following theorem.

Theorem 3.6. Let p be an odd prime, a and k be positive integers. Then for any non-
negative integer n we have

Ekφ(pa)+2n ≡
(
1− (−1)

p−1
2 p2n

)
E2n (mod pa).
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