
FINDING g-GONAL NUMBERS IN RECURRENCE SEQUENCES
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Abstract. In this note we find all g-gonal numbers in the Fibonacci, Lucas, Pell and
Associated Pell sequences for g ∈ {6, 8, 9, 10, . . . , 20}.

1. Introduction

The m-th g-gonal number is defined by

Gm,g =
m{(g − 2)m− (g − 4)}

2
.

If m is a positive integer and g = 3, 4, 5, 6, 7, 8, . . . , then the number Gm,g is called trian-
gular, square, pentagonal, hexagonal, heptagonal, octagonal, etc. There are many articles
concerning the mixed exponential-polynomial Diophantine equation

Rn = P (x),

where Rn is a linear recursive sequence and P ∈ Z[X] is a polynomial. Here we refer to
[3, 10, 16, 17, 18, 19, 20] and the references given there. Several papers have been published
identifying the numbers Gm,g (for certain values of g) in the Fibonacci sequence {Fn}, Lucas
sequence {Ln}, Pell sequence {Pn} and Associated Pell sequence {Qn}, where these sequences
are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2,

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2,

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2,

Q0 = 1, Q1 = 1, Qn = 2Qn−1 + Qn−2 for n ≥ 2.

In the table below we summarize related results in cases of g = 3, 4, 5 and 7.

Gm,3 Gm,4 Gm,5 Gm,7

Fn [11]: {0, 1, 3, 21, 55} [8, 9]: {0, 1, 144} [13]: {0, 1, 5} [26]: {0, 1, 13, 34, 55}
Ln [12]: {1, 3} [5]: {1, 4} [14]: {2, 1, 7} [25]: {1, 4, 7, 18}
Pn [15]: {0, 1} [7]: {0, 1, 169} [23]: {0, 1, 2, 5, 12, 70} [28]: {0, 1, 70}
Qn [24]: {1, 3} [7]: {1} [22]: {1, 7} [27]: {1, 7, 99}

We note that the result related to the equation Fn = Gm,4 is a straightforward consequence
of two papers by Ljunggren [8, 9] and it was rediscovered by Cohn [5].

In the present paper we resolve the equations

Fn = Gm,g, Ln = Gm,g,

Pn = Gm,g, Qn = Gm,g,

for g ∈ {6, 8, 9, 10, . . . , 20}.
Our main result is the following.
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Theorem 1.1. All the solutions of the equations Fn = Gm,g, Ln = Gm,g, Pn = Gm,g and
Qn = Gm,g with m,n ≥ 0 for g ∈ {6, 8, 9, 10, . . . , 20} are those which are summarized in the
table below.

Gm,6 Gm,8 Gm,9 Gm,10 Gm,11 Gm,12 Gm,13

Fn {0, 1, 3, 21, 55} {0, 1, 5, 8, 21, 4181} {0, 1} {0, 1} {0, 1, 8} {0, 1} {0, 1, 13}
Ln {1, 3, 5778} {1} {1} {1, 7, 76} {1, 11} {1} {1}
Pn {0, 1} {0, 1, 5, 408} {0, 1} {0, 1} {0, 1} {0, 1, 12} {0, 1, 70}
Qn {1, 3} {1} {1} {1, 7} {1} {1} {1}

Gm,14 Gm,15 Gm,16 Gm,17 Gm,18 Gm,19 Gm,20

Fn {0, 1, 34} {0, 1} {0, 1, 13} {0, 1, 2584} {0, 1} {0, 1, 2584} {0, 1}
Ln {1, 11, 76} {1} {1} {1, 322} {1, 18} {1} {1}
Pn {0, 1} {0, 1, 12} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}
Qn {1} {1} {1} {1, 17, 47321} {1} {1, 99} {1, 17}

Proof. The statement follows from Lemma 2, Lemma 3, Lemma 4 and Lemma 5. ¤

We use the following well-known properties of the sequences Fn, Ln, Pn and Qn :

L2
n − 5F 2

n = 4(−1)n, (1)

Q2
n − 2P 2

n = (−1)n. (2)

2. The equation Fn = Gm,g

If n is even, then from (1) we get

Ceven
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X)2 + 16,

and if n is odd, then

Codd
Fn

: Y 2 = 5((g − 2)X2 − (g − 4)X)2 − 16.

One can easily check that (X,Y ) = (0, 4) is a point on the curve Ceven
Fn

and (X, Y ) = (1, 2)
is a point on Codd

Fn
, that is these curves define elliptic curves. We need to find the integral

points on these genus 1 curves for fixed g to solve the equation Fn = Gm,g. One can apply
the so-called elliptic logarithm method (see [6, 29, 30]). This method is now available in the
computer algebra package MAGMA [1]. We have the following result.

Lemma 2.1. The solutions of the equation Fn = Gm,g with m,n ≥ 0 and g ∈ {6, 8, 9, 10, . . . , 20}
are

F0 = G0,g, F1 = F2 = G1,g, where g ∈ {6, 8, 9, 10, . . . , 20},
F4 = G−1,6, F8 = G−3,6, F10 = G−5,6,
F5 = G−1,8, F6 = G2,8, F8 = G3,8, F19 = G−37,8,
F6 = G−1,11, F7 = G2,13, F9 = G−2,14, F7 = G−1,16,
F18 = G19,17, F18 = G−17,19.

Proof. We have reduced the problem to computing integral points on certain elliptic curves.
Using the computer package MAGMA [1], we find the solutions listed in the theorem. ¤
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3. The equation Ln = Gm,g

If n is even, then from (1) we get

Ceven
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X)2 − 80,

and if n is odd, then

Codd
Ln

: Y 2 = 5((g − 2)X2 − (g − 4)X)2 + 80.

It is easy to see that (1, 10) ∈ Codd
Ln

(Q). Here we have the following result.

Lemma 3.1. The solutions of the equation Ln = Gm,g with m,n ≥ 0 and g ∈ {6, 8, 9, 10, . . . , 20}
are

L1 = G1,g, where g ∈ {6, 8, 9, 10, . . . , 20},
L2 = G−1,6, L18 = G54,6, L4 = G−1,10,
L9 = G−4,10, L5 = G2,11, L5 = G−1,14, L9 = G4,14,
L12 = G7,17, L6 = G2,18.

Proof. The point (1, 10) is on the curve Codd
Ln

(Q), therefore it is an elliptic curve and we use
MAGMA [1] again to find all integral points on these curves. Similarly we have points on
Ceven

Ln
(Q) for g ∈ {6, 10, 17, 18}, so the same method works to solve the problem in these

cases. For g ∈ {8, 9, 11, 13, 14, 16, 19} we get that the equations do not have solutions in Q5.
As an example we consider the case g = 8. The equation is

Y 2 = 180X4 − 240X3 + 80X2 − 80.

The above equation does not have solutions modulo 125. It remains to deal with the cases
g ∈ {12, 15, 20}. The corresponding equations are

g = 12 : Y 2 = 500X4 − 800X3 + 320X2 − 80,

g = 15 : Y 2 = 845X4 − 1430X3 + 605X2 − 80,

g = 20 : Y 2 = 1620X4 − 2880X3 + 1280X2 − 80.

We give the proof for g = 12; the other two equations can be solved similarly. All solutions
of the Diophantine equation A2 − 5B2 = −5C2 can be given in parametric form as follows
(see e.g. [4]).

A = − t

h
10uv,

B = − t

h
(u2 + 5v2),

C =
t

h
(u2 − 5v2),

where h | 50 and gcd(u, v) = 1. The equation Y 2 = 500X4 − 800X3 + 320X2 − 80 can be
written as Y 2 − 5(10X2 − 8X)2 = −5(4)2. Hence, we have

Y = − t

h
10uv,

10X2 − 8X = − t

h
(u2 + 5v2),

4 =
t

h
(u2 − 5v2).
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Therefore we get that t | 4. We rewrite the second equation as (10X− 4)2− 16 = −10 t
h
(u2 +

5v2). Since 16 = 4 t
h
(u2 − 5v2) we obtain

(10X − 4)2 = −6
t

h
u2 − 70

t

h
v2.

For given t, h we parametrize all solutions of these equations as

10X − 4 = p1,t,h(r, s),

u = p2,t,h(r, s),

v = p3,t,h(r, s),

where p1,t,h, p2,t,h, p3,t,h are homogeneous degree 2 polynomials. Thus we obtain quartic Thue
equations

4 =
t

h
(p2,t,h(r, s)

2 − 5p3,t,h(r, s)
2).

We use MAGMA [1] to solve these equations and then obtain all solutions of the equation
Ln = Gm,12. ¤

4. The equation Pn = Gm,g

If n is even, then from (2) we get

Ceven
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X)2 + 4,

and if n is odd, then

Codd
Pn

: Y 2 = 2((g − 2)X2 − (g − 4)X)2 − 4.

We have that (0, 2) ∈ Ceven
Pn

(Q) and (1, 2) ∈ Codd
Pn

(Q). We compute the integral points on
these curves and obtain the following result.

Lemma 4.1. The solutions of the equation Pn = Gm,g with m,n ≥ 0 and g ∈ {6, 8, 9, 10, . . . , 20}
are

P0 = G0,g, P1 = G1,g, where g ∈ {6, 8, 9, 10, . . . , 20},
P3 = G−1,8, P8 = G12,8, P4 = G2,12,
P6 = G4,13, P4 = G−1,15.

5. The equation Qn = Gm,g

If n is even, then from (2) we get

Ceven
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X)2 − 8,

and if n is odd, then

Codd
Qn

: Y 2 = 2((g − 2)X2 − (g − 4)X)2 + 8.

Here we have that (1, 0) ∈ Ceven
Qn

(Q) and (1, 4) ∈ Codd
Qn

(Q). Substituting X = U + 1 in case
of Ceven

Qn
we get

Y 2 = U
(
(2g2 − 8g + 8)U3 + (4g2 − 8g)U2 + (2g2 + 8g − 16)U + 8g

)
.
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Hence, we have that

U | 8g or

(2g2 − 8g + 8)U3 + (4g2 − 8g)U2 + (2g2 + 8g − 16)U + 8g = ¤ or

(2g2 − 8g + 8)U3 + (4g2 − 8g)U2 + (2g2 + 8g − 16)U + 8g = −¤.

We have the following result.

Lemma 5.1. The solutions of the equation Qn = Gm,g with m,n ≥ 0 and g ∈ {6, 8, 9, 10, . . . , 20}
are

Q0 = G1,g, Q1 = G1,g, where g ∈ {6, 8, 9, 10, . . . , 20},
Q2 = G−1,6, Q3 = G−1,10, Q4 = G2,17,
Q13 = G−79,17, Q6 = G−3,19, Q4 = G−1,20.

Remark. Siegel [21] in 1926 proved that the hyperelliptic equation

y2 = a0x
n + a1x

n−1 + · · ·+ an =: f(x)

has only a finite number of integer solutions if f has at least three simple roots. This result
is ineffective, that is, its proof does not provide any algorithm for finding the solutions. By
using explicit lower bounds for linear forms in logarithms Baker [2] gave an effective version
of the above result of Siegel. To show that for fixed g the equation

Gm,g = Rn, Rn ∈ {Fn, Ln, Pn, Qn}
has only finitely many effectively computable solutions, one has to prove that the quartic
polynomials defining the genus 1 curves Ceven

Rn
, Codd

Rn
have at least three simple roots. It is

easy to see that the discriminant of these quartic polynomials can be zero only if g = 0 or
g = 2, hence there are only finitely many effectively computable solutions for fixed g > 2.
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