
FIBONACCI SEQUENCES OF QUATERNIONS

MARCO ABRATE

Abstract. In this paper Fibonacci sequences of quaternions are introduced, generalizing
Fibonacci sequences over commutative rings, and properties of such sequences are investi-
gated. In particular we are concerned with two kinds of Fibonacci sequences of generalized
quaternions over finite fields Fp, with p an odd prime, and their periods.

1. Introduction

Let u, v be invertible elements of an arbitrary field F with characteristic not 2 and let(u, v

F

)
be a generalized quaternion algebra over F.

(u, v

F

)
is a four-dimensional vector

space over F with the four basis elements 1, i1, i2, i3 satisfying the following multiplication
laws:

i21 = u, i22 = v, i3 = i1i2 = −i2i1,

and 1 acting as the unit element. Since the ring homomorphism

F −→
(u, v

F

)

c 7−→ c1

injects F into
(u, v

F

)
we consider F ⊂

(u, v

F

)
.

For q = (q0, q1, q2, q3) in
(u, v

F

)
, where q0, q1, q2, q3 ∈ F are the components of q with

respect to 1, i1, i2, i3, let q = (q0,−q1,−q2,−q3) be the conjugate of q; define as usual trace
and norm of a quaternion by

Tr(q) = q + q and N(q) = qq.

Furthermore, we introduce the function δ by setting

δ(q) = q2
0 −N(q). (1.1)

Denote by
(u, v

F

)∗
the group of all invertible elements of

(u, v

F

)
. It is well-known that

(u, v

F

)∗
coincides with the set of quaternions q such that N(q) 6= 0 and q−1 = N(q)−1q.

In [4] Fibonacci quaternions were introduced as the elements of the algebra of real quater-
nions whose components are Fibonacci numbers, and in [5] quaternions whose components
are generalized Fibonacci numbers or products of generalized Fibonacci numbers were con-
sidered. Our approach is different, as our purpose is to examine recurring sequences in
any quaternion algebra defined by a linear equation, extending the definition of Fibonacci
sequence in commutative rings.

356 VOLUME 46/47, NUMBER 4



FIBONACCI SEQUENCES OF QUATERNIONS

Let
(u, v

F

)
[x] be the polynomial ring over

(u, v

F

)
, and let P (x) be a monic second degree

left polynomial in
(u, v

F

)
[x]:

P (x) = x2 − ax + b. (1.2)

Definition 1.1. If P (x) is a polynomial as in Equation (1.2), the (left) Fibonacci sequence
of quaternions U = U(a, b) with characteristic polynomial P (x) is the recurring sequence of
the second order with initial values 1 and a defined by the following relations:




U1 = 1,

U2 = a,

Un = aUn−1 − bUn−2, for all n > 2.

If N(b) 6= 0 we can define the terms Un of the sequence U for negative values of n:

Un−2 = b−1(aUn−1 − Un) for all n ≤ 2. (1.3)

An important relation between the roots of the characteristic polynomial P (x) and the
terms of the Fibonacci sequence with parameters a and b is stated in the next theorem.

Theorem 1.2. Let α, β be distinct roots of P (x). If α − β is invertible and n is a positive
integer

Un = (αn − βn)(α− β)−1. (1.4)

Furthermore, if N(b) 6= 0 equation (1.4) holds true for every n ∈ Z.

Proof. Let us suppose that α, β are roots of P (x) and that α− β is invertible. For n = 1

(α− β)(α− β)−1 = 1 = U1,

and for n = 2

(α2 − β2)(α− β)−1 = (aα− b− aβ + b)(α− β)−1 = a = U2.

Now let n > 2 and suppose that (1.4) is true for n− 1 and n− 2. Then

(αn − βn)(α− β)−1 = (α2αn−2 − β2βn−2)(α− β)−1

= (aαn−1 − bαn−2 − aβn−1 + bβn−2)(α− β)−1

= (a(αn−1 − βn−1)− b(αn−2 − βn−2))(α− β)−1

= aUn−1 − bUn−2 = Un.

If N(b) 6= 0, since b = ax− x2 = (a− x)x, it follows that

N(b) = N(a− x)N(x) 6= 0,

that is every root of P (x) is invertible. Hence the same argument as above can be applied
to Equation (1.3) to prove the theorem when for n ≤ 0. ¤

Equation (1.4) is analogous to the Binet formula for the terms of the Fibonacci sequences in
the commutative case. It will be very useful in the following to deduce properties on the terms
of the Fibonacci sequences of quaternions when the powers of the roots of the characteristic
polynomial P are known. Recall that the positive powers of q can be determined by equation

qn = Fnq −N(q)Fn−1, (1.5)
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where Fk are the kth terms of the generalized Fibonacci sequence with parameters Tr(q)
and N(q) [2].

In particular, if F is a finite field with m elements we have the following lemma.

Lemma 1.3. Let
(u, v

F

)
be a generalized quaternion algebra over a finite field with charac-

teristic not 2 and |F| = m and let q ∈
(u, v

F

)
. If δ(q) 6= 0 then qm = q or qm = q according

as δ(q) is a square in F or not.

Proof. Suppose q ∈
(u, v

F

)
and δ(q) 6= 0. Let F = F (Tr(q), N(q)) be the generalized

Fibonacci sequence with parameters Tr(q) and N(q) in F. The discriminant of F is

Tr(q)2 − 4N(q) = 4δ(q) 6= 0.

If δ(q) is a square in F then the period of F in F divides m, that is Fm−1 = 0, Fm = 1 and,
by Equation (1.5),

qm = Fmq −N(q)Fm−1 = q.

If δ(q) is not a square in F the period of F in F divides m2: we have Fm+1 = 0, Fm = −1
and N(q)Fm−1 = −Tr(q). Then by Equation (1.5)

qm = Fmq −N(q)Fm−1 = −q + Tr(q) = q.

¤

2. Fibonacci sequences over finite fields

In this section we deal with the Fibonacci sequences in quaternion algebras over finite
fields. It is known [3, Theorems 9.7 and 9.8] that if u, v are invertible in the field Fp with

p elements and p is an odd prime, the structure of the quaternion algebra

(
u, v

Fp

)
over Fp

does not depend on u and v. Throughout we denote by Hp the quaternion algebra over Fp

and, if r ∈ Fp,

(
r

p

)
denote the Legendre symbol, that is

(
r

p

)
=





1 if r is a quadratic residue mod p

0 if p|r
−1 if r is a quadratic nonresidue mod p.

We begin a study of any Fibonacci sequence of quaternions U = U(a, b) starting from
properties of the roots of its characteristic polynomial P (x) = x2− ax + b ∈ Hp[x]. In order
to do this it is convenient to introduce the following auxiliary parameters:

â = 4−1Tr(a),

τ = Tr(ab)− 2â(δ(a) + Tr(b)),

λ = Tr(b)− 2â2 − δ(a),

ν = N(b) + â2(â2 − δ(a) + Tr(b))− â(Tr(a)Tr(b)− Tr(ab)),

µ = δ(a)2 − 4δ(b) + Tr(a) (τ + âδ(a)) ,

358 VOLUME 46/47, NUMBER 4



FIBONACCI SEQUENCES OF QUATERNIONS

and the auxiliary polynomials in Fp[x]:

ca,b(x) = x6 + 2λx4 + (λ2 − 4ν)x2 − τ 2,

da,b(x) = x6 + 4λx4 + 4λ2x2 − 4τ 2,

ea,b(x) = x8 − 2δ(a)x6 + µx4 + 2τ 2x2 − δ(a)τ 2.

We can identify different kinds of sequences depending on the relations between a, b and
p. In the following, two kinds of Fibonacci sequences are considered, namely Fibonacci
sequences of the first and of the second kind.

3. Fibonacci Sequences of the First Kind

Definition 3.1. Let p be an odd prime. A sequence of the first kind with respect to p is a
Fibonacci sequence of quaternions with parameters a and b such that

τδ(a)
(
4δ(a)(b2

0 − ν)− τ 2
) 6≡ 0 (mod p). (3.1)

If a and b are such to satisfy Equation (3.1), the roots of the characteristic polynomial of
U are given by Theorem 2.5 of [1] and are at most six in K ⊗Hp, where K is an algebraic
closure of F. Moreover we know that their traces are solutions of equation ca,b(x + 2â) ≡ 0
(mod p), where

ca,b(x) = x6 + 2λx4 + (λ2 − 4ν)x2 − τ 2

is a polynomial in Fp[x]. If t ∈ K is a root of ca,b(x) there exists a pair of roots α, β of the
characteristic polynomial P (x) of U such that Tr(α) + 2â = −(Tr(β) + 2â) = t:

α =
(t + a− (δ(a)t)−1τa′)

2
+

(t + a′)
(
b− b− (2â + δ(a)−1τ)a′

)

2(δ(a)− t2)
,

β =
(−t + a + (δ(a)t)−1τa′)

2
+

(−t + a′)
(
b− b− (2â + δ(a)−1τ)a′

)

2(δ(a)− t2)
,

(3.2)

where a′ = a− 2â.
The next theorem gives a sufficient condition for applying Theorem 1.2 to evaluate the

terms of U .

Theorem 3.2. Let

ea,b(x) = x8 − 2δ(a)x6 + µx4 + 2τ 2x2 − δ(a)τ 2.

If ca,b(x) does not divide ea,b(x) then there are two distinct roots α, β of P (x) such that

Tr(α) + Tr(β) + Tr(a) = 0 and α− β ∈ (K⊗Hp)
∗ .

Proof. Let us consider two distinct roots α, β of P (x) such that

Tr(α) + 2â = −(Tr(β) + 2â) = t.

By the equations in (3.2) it follows that

α− β = t− (δ(a)t)−1τ(a− 2â) + t(δ(a)− t2)−1
(
b− b− δ(a)−1(2âδ(a) + τ)(a− 2â)

)

and, by direct calculation,

N(α− β) = (t2(t2 − δ(a))2)−1
(
t8 − 2δ(a)t6 + µt4 + 2τ 2t2 − τ 2δ(a)

)
.

So α− β is invertible if and only if t is not among the roots of the polynomial

ea,b(x) = x8 − 2δ(a)x6 + µx4 + 2τ 2x2 − δ(a)τ 2.
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Hence, if ca,b(x) - ea,b(x) there is a pair α, β of roots of P (x) such that Tr(α) + Tr(β) =
−Tr(a) and N(α− β) 6= 0. ¤
Theorem 3.3. Let U be the Fibonacci sequence of quaternions of the first kind with respect
to p and with characteristic polynomial P (x) = x2− ax + b. If ca,b(x) - ea,b(x) then there are
two distinct roots α, β of P (x) such that Tr(α) + Tr(β) + Tr(a) = 0 and

Un = (αn − βn)(α− β)−1.

Proof. This theorem immediately follows by Theorem 1.2 and Theorem 3.2. ¤
Let us introduce the following polynomial in Fp[x]:

c̃a,b(x) = x3 + 2λx2 +
(
λ2 − 4ν

)
x− τ 2. (3.3)

Since ca,b(x) = c̃a,b(x
2), we can use c̃a,b(x) to determine the splitting field of ca,b(x), and then

the quaternion algebra containing all the roots of P (x).
From now on Np(c̃a,b(x)) will denote the number of roots of c̃a,b(x) in Fp. (See [6] for a

full discussion on the number of roots of third degree polynomials over finite fields).

Theorem 3.4. Let ca,b(x) and c̃a,b(x) be as above. If Np(c̃a,b(x)) = 0 then ca,b(x) is completely
reducible in Fp3.

Proof. Denote by γ1, γ2, γ3 the roots of c̃a,b(x). Since Np(c̃a,b(x)) = 0 we have γi ∈ Fp3 , and

γp3−1
i = 1. But

γ
p3−1

2
i = (γp2+p+1

i )
p−1
2 = (γ1γ2γ3)

p−1
2 =

(
τ 2

) p−1
2 = 1,

thus, every root of c̃a,b(x) is a square in Fp3 , and every root of ca,b(x) is in Fp3 . ¤
Theorem 3.5. Let P (x) = x2−ax+ b ∈ Hp[x], the characteristic polynomial of a Fibonacci
sequence of the first kind with respect to p, and let c̃a,b(x) ∈ Fp[x] as in Equation (3.3). The
polynomial P (x) has six roots in Fp3 ⊗Hp if Np(c̃a,b(x)) = 0, has six roots in Fp4 ⊗Hp if
Np(c̃a,b(x)) = 1 and has six roots in Fp2 ⊗Hp if Np(c̃a,b(x)) = 3.

Proof. By [6] and Theorem 3.4 the roots of ca,b(x) are in Fp3 ,Fp4 or Fp2 according as
Np(c̃a,b(x)) is 0, 1 or 3. Since the roots of P (x) are determined by the roots of ca,b(x) as
shown in [2] the assertion follows. ¤

To complete the study of the properties of the roots α and β of P (x) as a characteristic
polynomial of a Fibonacci sequence of the first kind we present the following theorems about
δ(α) mod p and δ(β) mod p.

Theorem 3.6. Let a, b ∈ Hp be parameters of a Fibonacci sequence U of the first kind with
respect to p and let P (x) be the characteristic polynomial of U . Let da,b(x) ∈ Fp[x] be the
polynomial

da,b(x) = x6 + 4λx4 + 4λ2x2 − 4τ 2.

If gcd(ca,b(x), da,b(x)) = 1 and if α is a root of P (x) then

δ(α) 6≡ 0 (mod p).

Proof. Let α be a root of P (x). We know that there exists a root β 6= α of P (x) such that
Tr(α) + Tr(β) + Tr(a) = 0. We can assume, without any loss of generality, that such roots
are given by the equations in (3.2). Setting t = Tr(α) + 2â one has

4δ(α) = t2 − 2t2 − 2(Tr(b)− 2â2) + 2δ(a)− t−1τ = −t−1
(
t3 + 2λt + τ

)
,
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and

4δ(β) = t2 − 2t2 − 2(Tr(b)− 2â2) + 2δ(a) + t−1τ = −t−1
(
t3 + 2λt− τ

)
,

thus, δ(α)δ(β) ≡ 0 (mod p) if and only if
(
t3 + 2λt + τ

) (
t3 + 2λt− τ

) ≡ 0 (mod p),

if and only if t is a root of da,b(x) and ca,b(x).
It follows that if gcd(ca,b(x), da,b(x)) = 1

δ(α) 6≡ 0 (mod p).

¤

Let us denote by W (p) the period of the Fibonacci sequence U = U(a, b) modulo p.

Theorem 3.7. Let a, b ∈ Hp be parameters of a Fibonacci sequence U of the first kind with
respect to p and let P (x) = x2−ax+b be the characteristic polynomial of U . If ca,b(x) - ea,b(x)
and gcd(ca,b(x), da,b(x)) = 1 then

W (p)|p6 − 1 if Np(c̃a,b(x)) = 0,

W (p)|p8 − 1 if Np(c̃a,b(x)) = 1,

W (p)|p4 − 1 if Np(c̃a,b(x)) = 3.

Proof. Since ca,b(x) does not divide ea,b(x), by Theorem 3.2 there are two roots α, β of P (x)
such that Tr(α) + Tr(β) + Tr(a) = 0 and N(α − β) 6≡ 0 (mod p), and those roots can
be used to obtain the nth term of the sequence U by (1.4). Furthermore, by Theorem 3.6
δ(α)δ(β) 6≡ 0 (mod p).

If Np(c̃a,b(x)) = 0, by Theorem 3.5 α, β ∈ Fp3⊗Hp. Thus, setting n = kp6 +m, by Lemma
1.3 we have

Up6k+m = (αp6k+m − βp6k+m)(α− β)−1

= (αp6kαm − βp6kβm)(α− β)−1

≡ (αk+m − βk+m)(α− β)−1 ≡ Uk+m (mod p).

If Np(c̃a,b(x)) = 1 then ca,b(x) has all the roots in Fp4 and α, β ∈ Fp4 ⊗Hp. Thus for n ∈ N,
n = kp8 + m

Ukp8+m = (αp8k+m − βp8k+m)(α− β)−1

= (αp8kαm − βp8kβm)(α− β)−1

≡ αk+m − βk+m)(α− β)−1 ≡ Uk+m (mod p).

Finally, if Np(c̃a,b(x)) = 3 all the roots of ca,b(x) are in Fp2 , and α, β ∈ Fp2 ⊗Hp. Hence,
for n ∈ N, setting n = kp4 + m we have

Ukp4+m = (αp4k+m − βp4k+m)(α− β)−1

= (αp4kαm − βp4kβm)(α− β)−1

≡ (αk+m − βk+m)(α− β)−1 ≡ Uk+m (mod p).

¤
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Theorem 3.8. Let P (x) = x2−ax+ b be the recurring polynomial of the Fibonacci sequence
of quaternions U of the first kind, and N(b) 6= 0.

If ca,b(x) - ea,b(x) and gcd(ca,b(x), da,b(x)) = 1 then for every k ∈ Z
Uk(p6−1) ≡ 0 (mod p) if Np(c̃a,b(x)) = 0,

Uk(p8−1) ≡ 0 (mod p) if Np(c̃a,b(x)) = 1,

Uk(p4−1) ≡ 0 (mod p) if Np(c̃a,b(x)) = 3.

Proof. If N(b) 6= 0, we have U0 = b−1(a− a) = 0. Since the order of U divides p6 − 1, p8 − 1
or p4−1 according as Np(c̃a,b(x)) = 0, 1 or 3, applying Theorem 3.7 the assertion follows. ¤

4. Fibonacci Sequences of the Second Kind

Definition 4.1. Let p be an odd prime. The Fibonacci sequence of quaternions U = U(a, b)
with parameters a and b is said to be of the second kind with respect to p if

δ(a)ν(λ2 − 4ν) 6≡ 0 (mod p) and τ ≡ 0 (mod p).

Since a and b are such that τ ≡ 0 (mod p) it follows that ca,b has 0 as a double root and by [1]
(Theorem 2.5) there are two roots of P (x), namely α and β, such that Tr(α) = Tr(β) = 2â:

α =
−2â(λ2 − 4ν)

1
2 +

(
δ(a)− (λ2 − 4ν)

1
2

)
a + 2(a− 2â)(b− b)

2δ(a)
,

β =
2â(λ2 − 4ν)

1
2 +

(
δ(a) + (λ2 − 4ν)

1
2

)
a + 2(a− 2â)(b− b)

2δ(a)
.

(4.1)

It is easy to check that

δ(α) = −2−1λ + 2−1(λ2 − 4ν)
1
2 ,

δ(β) = −2−1λ− 2−1(λ2 − 4ν)
1
2 .

(4.2)

Moreover α− β = (a− 2â)δ(a)−1(λ2 − 4ν)
1
2 and

N(α− β) = −δ(a)−1(λ2 − 4ν). (4.3)

Since λ2 − 4ν 6≡ 0 (mod p) the terms of U are given by formula (1.4) using α and β as in
Equations (4.1).

By [1] we know that if

(
λ2 − 4ν

p

)
= 1 then α, β ∈ Hp, while if

(
λ2 − 4ν

p

)
= −1 then

α, β ∈ Fp2 ⊗Hp.
We can prove the following theorems about the order W (p) of the sequence of the second

kind U .

Theorem 4.2. Let P (x) = x2 − ax + b ∈ Hp[x] be the characteristic polynomial of U such
that

δ(a)ν(λ2 − 4ν) 6≡ 0 (mod p) and τ ≡ 0 (mod p),
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and let α be a root of P (x) as in Equation (4.1). If

(
λ2 − 4ν

p

)
= 1 and

(
ν

p

)
= 1 then

Up ≡
(

δ(α)

p

)
(mod p)

Up+1 ≡
(

δ(α)

p

)
(a− â) + â (mod p).

Furthermore, if

(
δ(α)

p

)
= 1 then W (p)|p− 1, W (p)|p2 − 1, otherwise.

Proof. By the equations in (4.2) we have

δ(α)δ(β) = 4−1
(
λ2 − λ2 + 4ν

)
= ν. (4.4)

Hence, (
δ(α)δ(β)

p

)
=

(
ν

p

)

and (
δ(α)

p

)
=

(
δ(β)

p

)
. (4.5)

Evaluating the pth term of the Fibonacci sequence, bearing in mind that Tr(α − β) ≡ 0
(mod p), we get

Up = (αp − βp)(α− β)−1

≡ 2−1

((
δ(α)

p

)
(α− α)−

(
δ(β)

p

)
(β − β)

)
(α− β)−1

≡ 2−1

(
δ(α)

p

)
(α− β − (α− β))(α− β)−1

≡
(

δ(α)

p

)
(α− β)(α− β)−1 ≡

(
δ(α)

p

)
(mod p).

Suppose

(
δ(α)

p

)
= 1. By Equation (4.5),

(
δ(β)

p

)
= 1 and by Lemma 1.3 αp ≡ α

(mod p), βp ≡ β (mod p), so that

Up+1 = (αp+1 − βp+1)(α− β)−1 ≡ (α2 − β2)(α− β)−1 ≡ a (mod p), (4.6)

and the period of U divides p− 1.
Otherwise, if δ(α) is a quadratic nonresidue mod p by Lemma 1.3, αp = α and βp = β,

and

Up+1 = (αp+1 − βp+1)(α− β)−1 ≡ (N(α)−N(β))(α− β)−1

≡ −(δ(α)− δ(β))(α− β)−1.

Furthermore by Equation (4.3), we have

(α− β)−1 ≡ (λ2 − 4ν)−1/2(a− 2â) (mod p).

On the other hand by the equations in (4.2) it follows δ(α)− δ(β) ≡ (λ2 − 4ν)1/2 (mod p),
thus

Up+1 ≡ −(a− 2â). (4.7)
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Equations (4.6) and (4.7) can be briefly written as

Up+1 ≡
(

δ(α)

p

)
(a− â) + â (mod p).

Evaluating the p2th term and the (p2 + 1)th term of the sequence U we obtain

Up2 = (αp2 − βp2

)(α− β)−1 ≡ (α− β)(α− β)−1 ≡ 1 (mod p)

and
Up2+1 = (αp2+1 − βp2+1)(α− β)−1 ≡ (α2 − β2)(α− β)−1 ≡ a (mod p),

that is W (p)|p2 − 1. ¤
Theorem 4.3. Let U be the Fibonacci sequence in Hp with parameters a and b, and suppose
U is of the second kind with respect to p and let α be a root of P (x) as in the first equation
of (4.1). If (

λ2 − 4ν

p

)
=

(
ν

p

)
= 1

then if k is a positive integer

Uk(p−1) ≡ 0 (mod p) if

(
δ(α)

p

)
= 1,

Uk(p2−1) ≡ 0 (mod p) if

(
δ(α)

p

)
= −1.

Proof. Suppose

(
δ(α)

p

)
= 1, and let {Fn} the Fibonacci sequence with parameters Tr(α)

and N(α). By Equation (1.5) we know that αp−1 = Fp−1α−N(α)Fp−2 that is, since δ(α) is
a quadratic residue mod p,

αp−1 = −N(α)Fp−2.

Furthermore, N(α)Fp−2 = Tr(α)Fp−1 − Fp = −1, i.e.

αp−1 = 1.

The same argument proves that βp−1 = 1, so that for every integer k we have αk(p−1) =
βk(p−1) = 1, and

Uk(p−1) =
(
αk(p−1) − βk(p−1)

)
(α− β)−1 ≡ 0 (mod p).

Analogously, if

(
δ(α)

p

)
= −1 we have αp2−1 = βp2−1 = 1 and

Uk(p2−1) =
(
αk(p2−1) − βk(p2−1)

)
(α− β)−1 ≡ 0 (mod p).

¤
Theorem 4.4. Let P (x) = x2− ax + b ∈ Hp[x] be the recurring polynomial of the Fibonacci
sequence U of the second kind with respect to p with parameters a and b. If(

λ2 − 4ν

p

)
= −1

then W (p)|p4 − 1.

364 VOLUME 46/47, NUMBER 4



FIBONACCI SEQUENCES OF QUATERNIONS

Proof. Our assumption on λ2 − 4ν implies α, β ∈ Fp2 ⊗Hp, where α and β are given by the

equations in (4.1). Hence, by Lemma 1.3 αp4 ≡ α and βp4 ≡ β. Thus,

Up4 = (αp4 − βp4

)(α− β)−1 ≡ (α− β)(α− β)−1 ≡ 1 (mod p)

and
Up4+1 = (αp4+1 − βp4+1)(α− β)−1 ≡ (α2 − β2)(α− β)−1 ≡ a (mod p),

and it follows W (p)|p4 − 1. ¤
Theorem 4.5. Let P (x) = x2 − ax + b ∈ Hp[x] be the characteristic polynomial of the
Fibonacci sequence U of the second kind with respect to p with parameters a and b. If(

λ2 − 4ν

p

)
= −1

then for every k ∈ N
Uk(p4−1) ≡ 0 (mod p).

Proof. Since

(
λ2 − 4ν

p

)
= −1 the roots of the characteristic polynomial of the sequence U

described by the equations in (4.1) are in the algebra Fp2 ⊗Hp. By Equation (4.4) it follows

that δ(α) and δ(β) are both invertible and by Lemma 1.3 αp4−1 = βp4−1 = 1. This implies

Uk(p4−1) =
(
αk(p4−1) − βk(p4−1)

)
(α− β)−1 ≡ 0 (mod p).

¤
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