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Abstract. We introduce the concept of an integer sequence to be almost power free and
show that the primorial plus one sequence 2 ·3 ·5 · · · pn +1 and its generalizations are almost
power free. In addition a stronger result is also proven, namely that the primorial plus one
sequence is free from perfect powers.

1. Introduction

A frequently occurring question in the theory of integer sequences is the existence or non-
existence of perfect powers, natural numbers of the form mn where m,n ∈ N\{1}, among
the terms of a given integer sequence. Such questions have proved difficult to resolve, in
connection with a number of well-known integer sequences, such as the Fibonacci and Lucas
sequences. Indeed, using a novel approach that combines the theory of logarithmic forms
with the modular method, M. Mignotte et al [1] has recently shown that the only Fibonacci
numbers which are perfect powers are F0 = 0, F1 = F2 = 1, F6 = 8 and F12 = 144. The
Fibonacci sequence is a particular example of a broader class of sequences we shall define
here as being “almost power free”, in that for each integer s ∈ N\{1}, there can only be at
most finitely many perfect powers in the sequence having exponent s. With this definition in
mind, it is natural to question whether there are other familiar, but non-trivial examples of
sequences, such as the Fibonacci sequence, which satisfy the “almost power free” condition.
In this paper, we shall construct such a family of sequences using a generalization of the
primorial plus one sequence that is, 2 ·3 ·5 · · · p+1, found in Euclid’s proof for the infinitude
of primes. In addition, we shall also demonstrate that the sequence 2 · 3 · 5 · · · p + 1, is in
point of fact free from all perfect powers.

2. Main Results

Before establishing the main result, let us first make precise the idea of a sequence being
almost power free with the following definition.

Definition 2.1. A sequence of positive integers {an} is said to be almost power free, if
for each integer s ∈ N\{1} there exists an ms ∈ N such that for all n ≥ ms, there does not
exist an N ∈ N such that an = N s.

In what follows the set of prime numbers is denoted by P .

Theorem 2.2. Suppose {an} is a sequence of positive integers defined in the following man-

ner. Partition the set P\{2, 5} =
∞⋃
i=1

Ai, where each set Ai is finite with Ai∩Aj = ∅, for i 6= j,

and let an =
∏

p∈An

p. Then the associated sequence {bn}, defined by bn = 2 · 5 · a1a2 · · · an + 1,

is an almost power free sequence.
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Proof. We argue via proof by contradiction. Assume for any exponent s ∈ N\{1} there
exists two infinite subsequences {nk}, {Nk} of positive integers greater than unity, such
that bnk

= N s
k . Furthermore, we may assume without loss of generality that s is prime,

since if s = rp, where r, p ∈ N and p is prime, then N s
k = (N r

k )p. Clearly as bnk
is odd so

must Nk, hence Nk ≡ ±1,±3 or 5 (mod 10). First note that Nk 6≡ 5 (mod 10), since the
contrary would imply that 5|bnk

, which is impossible. Now as bnk
≡ 1 (mod 10), if Nk ≡ ±3

(mod 10) then the only positive integer powers of Nk congruent to 1 (mod 10) are N4n
k , for

n = 1, 2, . . ., thus as p is prime the equality bnk
= Np

k is impossible and so N 6≡ ±3 (mod 10).
Similarly, if N ≡ −1 (mod 10), then as the only positive integer powers of Nk congruent to
1 (mod 10) are N2n

k , for n = 1, 2, . . ., we need only examine the equality bnk
= (10m− 1)2,

where m ∈ N. Upon expanding and rearranging terms, one finds that

a1a2 · · · ank
= 10m2 − 2m,

which is impossible as the right-hand side is even, while the left-hand side is odd, thus
Nk 6≡ −1 (mod 10). Alternatively, if Nk ≡ 1 (mod 10) then, a similar argument establishes
the impossibility of the equality bnk

= (10m + 1)2. Hence, as all other positive integer
powers of Nk are congruent to 1 (mod 10), we are left to consider the remaining equality
bnk

= (10m+1)p, where p is an odd prime. Upon expanding and rearranging terms one finds
that

a1a2 · · · ank
= 10p−1mp +

(
p

1

)
10p−2mp−1 +

(
p

2

)
10p−3mp−2 + · · ·+

(
p

p− 1

)
m. (2.1)

As every prime p|(p
i

)
, for i = 1, 2, . . . , p− 1, we deduce from (2.1) that p 6= 5 since otherwise

5 would divide the right-hand side but not the left-hand side of (2.1). Thus assume p is an
odd prime other than 5. Now by construction the product a1a2 · · · ank

is square free and
for k sufficiently large p|a1a2 · · · ank

. Consequently, p - m since otherwise p2 would divide
the left-hand side of (2.1), thus p - 10p−1mp and so cannot divide the right-hand side of
(2.1), thus producing the final contradiction and so Nk 6≡ 1(mod 10). Hence, the original
assumption is false and so for n sufficiently large there cannot exist, for each fixed exponent
p ∈ N\{1}, an N ∈ N such that bn = Np. Thus the sequence {bn} must be almost power
free. ¤

If pn denotes the n-th prime, then a simple inductive argument reveals that the set partition

P\{2, 5} =
∞⋃
i=1

Ai given by A1 = {3} and Ai = {pi+2}, for i > 1, gives rise to the sequence

bn = 2 · 3 · 5 · · · pn+2 + 1. Thus from Theorem 2.2 we conclude that the primorial plus
one sequence 2 · 3 · 5 · · · pn + 1 must be almost power free. To conclude we prove using a
modification of the proof of Theorem 2.2 the following stronger result.

Theorem 2.3. The primorial plus one sequence given by bn = 2 ·3 ·5 · · · pn +1 is power free.

Proof. As b1 = 3 and b2 = 7 are not perfect powers, we consider the sequence bn where
n > 2. Fix n and again assume without loss of generality that for a prime exponent p,
there exists an N ∈ N\{1}, such that bn = Np. Clearly as bn is odd so must N , hence
N ≡ ±1,±3 or 5 (mod 10). First note that N 6≡ 5 (mod 10), since the contrary would
imply that 5|bn, which is impossible. Now as bn ≡ 1 (mod 10), if N ≡ ±3 (mod 10) then
the only positive integer powers of N congruent to 1 (mod 10) are N4s, for s = 1, 2, . . ..
Thus, as p is prime the equality bn = Np is impossible and so N 6≡ ±3 (mod 10). Similarly,
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if N ≡ −1 (mod 10), then as the only positive integer powers of N congruent to 1 (mod 10)
are N2s, for s = 1, 2, . . ., we need only examine the equality bn = (10m− 1)2, where m ∈ N.
Upon expanding and rearranging terms, one finds that

3 · 7 · 11 · · · pn = 10m2 − 2m,

which is impossible as the right-hand side is even, while the left-hand side is odd, thus
N 6≡ −1(mod 10). Alternatively, if N ≡ 1 (mod 10) then a similar argument establishes
the impossibility of the equality bn = (10m + 1)2. Hence, as all other positive integer
powers of N are congruent to 1 (mod 10), we are left to consider the remaining equality
bn = (10m+ 1)p, where p is an odd prime. Upon expanding and rearranging terms one finds
that

3 · 7 · 11 · · · pn = 10p−1mp +

(
p

1

)
10p−2mp−1 +

(
p

2

)
10p−3mp−2 + · · ·+

(
p

p− 1

)
m. (2.2)

As every prime p|(p
i

)
, for i = 1, 2, . . . , p− 1, we deduce from (2.2) that p 6= 5 since otherwise

5 would divide the right-hand side but not the left-hand side of (2.2). Thus assume p is
an odd prime other than 5. We now show that p divides the left-hand side but not the
right-hand side of (2.2). First note from the equality bn = (10m+1)p = Np that (N, pi) = 1,
for all i = 1, 2, . . . , n, and so N > pn, for if N ≤ pn then at least one of the pi must divide
N . Consequently bn = p1p2 · · · pn + 1 = Np > pp

n and so p1p2 · · · pn ≥ pp
n, but this can only

be true if n > p. However, as pn > n we deduce that pn > p and as p 6= 2, 5 one must have
p|3 · 7 · 11 · · · pn. Furthermore, as the left-hand side of (2.2) is square free, we note p - m
since otherwise p2 would divide the right-hand side of (2.2). Thus, p - 10p−1mp but p|(p

i

)
,

for i = 1, 2, . . . , p − 1, and so p cannot divide the right-hand side of (2.2), a clear and final
contradiction and so N 6≡ 1 (mod 10). Hence the original assumption is false and thus the
sequence bn = 2 · 3 · 5 · · · pn + 1 must be power free. ¤
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