
ON PYTHAGOREAN TRIPLES CONTAINING A FIXED INTEGER

AMITABHA TRIPATHI

Abstract. For a given positive integer n, we determine explicit formulas for the number
of occurrences of n as a part of a Pythagorean triple, and also as a part of a primitive
Pythagorean triple. We also determine the least positive integer that is a part of at least n
such primitive triples and obtain several conditions that help in characterizing the analogous
case for all triples.

1. Introduction

Pythagorean triples {a, b, c} are positive integers a, b, c which satisfy the equation a2+b2 =
c2. An ordered Pythagorean triple (a, b, c) is a triple that also satisfies the order relation
a < b < c. For any k ∈ N and for any Pythagorean triple {a, b, c}, the triple {ka, kb, kc} is
also Pythagorean. A Pythagorean triple {a, b, c} is primitive if gcd(a, b, c) = 1. All primitive
Pythagorean triples (a, b, c) are given parametrically by

{a, b} = {r2 − s2, 2rs}, c = r2 + s2,

where r, s are positive integers of opposite parity, r > s, and gcd(r, s) = 1. It can be easily
deduced that all Pythagorean triples (a, b, c) can be characterized by

{a, b} = {k(r2 − s2), 2krs}, c = k(r2 + s2),

where r, s are positive integers of opposite parity, r > s, and gcd(r, s) = 1 and k = gcd(a, b, c).
All this is well-known and can be found in most books on elementary Number Theory.

The parametric solution to x2 + y2 = z2 helps in suggesting and proving several prop-
erties that Pythagorean triples satisfy, for instance that 60 | abc whenever {a, b, c} is a
Pythagorean triple. It is not difficult to show that for every n ≥ 3, there is a Pythagorean
triple {a, b, n}. In fact, for each such n ≥ 1, there are at least n Pythagorean triples having
the same least member. The main purpose of this article is to determine the number P(n)
(respectively, P?(n)) of Pythagorean (respectively, primitive Pythagorean) triples (a, b, c)
with n ∈ {a, b, c}. This naturally leads us to determine `(n) (respectively, `?(n)) which rep-
resents the least positive integer that is a member of at least n Pythagorean (respectively,
primitive Pythagorean) triples. The problem about determining P(n) and P?(n) is also
considered in [4] and about determining `(n) in [2]. Lambek & Moser in [5] showed that if
P (N) denotes the number of primitive Pythagorean triples {a, b, c}, a ≤ b ≤ c and 1

2
ab ≤ N ,

then
P (N) = cN1/2 + O

(
N1/3

)
,

where c = (π5)−1/2Γ2(1
4
) ≈ 0.53134, and conjectured that

P (N) = cN1/2 − c′N1/3 + o
(
N1/3

)
,

where c′ ≈ 0.295.
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2. Counting Primitive Pythagorean Triples

We begin by proving the two results related to our main problem that are mentioned in
the Introduction. Each proof is constructive and easy to verify.

Lemma 1. For each n ≥ 3, there exists a Pythagorean triple {a, b, n}.
Proof. Let n ≥ 3. We show that the equation a2 +n2 = b2 has a solution in positive integers
{a, b}. Set b − a = 1, b + a = n2 if n is odd , and b − a = 2, b + a = n2

2
if n is even. This

gives the triples { (
n, 1

2
(n2 − 1), 1

2
(n2 + 1)

)
when n is odd ;

(
n, 1

4
n2 − 1, 1

4
n2 + 1

)
when n is even.

This construction completes the proof. ¤
Lemma 2. For each n ≥ 1 and a ≥ 2, there exists n Pythagorean triples (2an, bk, ck) for
0 ≤ k ≤ n− 1.

Proof. For 0 ≤ k ≤ n− 1, set bk = ak(a2n−2k − 1) and ck = ak(a2n−2k + 1). Then c2
k − b2

k =
a2k · 4a2n−2k = (2an)2. ¤

Lemma 1 ensures that every n is a part of some primitive Pythagorean triple, so that
P?(n) ≥ 1 for n ≥ 3. Lemma 2 says that, for each n ≥ 1, there is some m for which
P(m) ≥ n. In view of (1), it is convenient to determine P?(n) by looking at the two cases
— (i) n even; (ii) n odd.

Theorem 1. If n is even, then

P?(n) =

{
2ω(n)−1 if 4 | n;

0 if 4 - n,

where ω(n) is the number of prime divisors of n.

Proof. From (1), if {a, b, n} is a primitive Pythagorean triple and n is even, then n = 2rs
for some r, s of opposite parity and coprime. Each such pair {r, s} uniquely determine the
pair {a, b}. Since rs is even, there is no solution unless 4 | n. Suppose 4 | n, and suppose
r is even, without loss of generality. If P(n) denotes the set of odd prime divisors of n, any
subset (including ∅) of P(n) uniquely determines r, and hence s, since no prime pi can divide
both r and s. There are 2ω(n)−1 choices for r, and hence as many choices for expressing n in
the form 2rs with r, s coprime and of opposite parity. ¤

The case of odd n requires us to further consider two subcases. Accordingly, let P?
1 (n)

denote the number of primitive Pythagorean triples {a, b, n} where n < max{a, b}, and let
P?

2 (n) denote the number of such triples with n > max{a, b}.

Theorem 2. For odd n,

P?
1 (n) = 2ω(n)−1,

where ω(n) is the number of prime divisors of n. Also, P?
1 (1) = 0.

Proof. We wish to count the number of positive integer pairs {r, s} such that r2−s2 = n with
r, s of opposite parity and gcd(r, s) = 1. The parity of n forces both factors r + s, r− s to be
odd, so that r, s are of opposite parity. Moreover, gcd(r, s) = 1 implies gcd(r + s, r− s) = 1.
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So, as in the proof of Theorem 1, choosing the prime factors for one of r+s, r−s determines
the prime factors of the other, and r, s are uniquely determined from r + s, r − s. However,
since we must reserve the larger factor of n for r + s, only half of all the subsets count. ¤
Theorem 3. For odd n,

P?
2 (n) =

{
2ω(n)−1 if no prime of the form 4k + 3 divides n;

0 if n has a prime divisor of the form 4k + 3,

where ω(n) is the number of prime divisors of n. Also, P?
2 (1) = 0.

For a proof of Theorem 3, we refer to [7, pp. 166-167]. The number of solutions in the
reference is 2ω1(n)+2, where ω1(n) denotes the number of prime divisors of n of the form 4k+1.
However, that counts the number of ways of expressing n as a sum of the squares of two
coprime integers, counting all permutations and changes of sign as different representations.
Theorems 2 and 3 combine to complete the solution of P?(n) in the case where n is odd.

Theorem 4. For odd n,

P?(n) =

{
2ω(n) if no prime of the form 4k + 3 divides n;

2ω(n)−1 if n has a prime divisor of the form 4k + 3,

where ω(n) is the number of prime divisors of n. Also, P?(1) = 0.

3. Counting Pythagorean Triples

We now turn to the problem of counting Pythagorean triples. Let d | n, with n = kd.
Each primitive Pythagorean triple {a′, b′, d} gives rise to a Pythagorean triple {ka′, kb′, n}.
In view of (2), we therefore have

P(n) =
∑

d|n
P?(d), (1)

and Theorems 1 and 4 of Section 1 may be used to determine P(n) completely. However,
we attempt to solve this problem more directly, without resorting to the results concerning
P?(n). Analogous to the definitions in the previous section, we let P1(n) (respectively,
P2(n)) denote the number of Pythagorean triples {a, b, n} where n < max{a, b} (respec-
tively, n > max{a, b}).
Theorem 5. Let n ∈ N. The number of ordered pairs (x, y) of positive integers such that
x2 − y2 = n equals 




⌈
1
2

(
d(n)− 1

)⌉
if n is odd;

⌈
1
2

(
d

(
n
4

)− 1
)⌉

if 4 | n,

where d(n) denotes the number of positive divisors of n. Moreover, there is no solution if
n ≡ 2 (mod 4).

Proof. Observe that x2−y2 has two factors x−y, x+y of the same parity. Hence x2−y2 = n
has a solution if and only if either n is odd or n is a multiple of 4.

If n is odd and n = ab with 1 ≤ a < b ≤ n, we may set x − y = a and x + y = b to get
x = 1

2
(b + a) and y = 1

2
(b− a). Since each divisor a may be paired with its conjugate divisor

n
a
, there are 1

2
d(n) solutions unless n is a square. If n = m2, the factorization n = m · m

does not give rise to a valid solution since y = 0, so the number of solutions is 1
2

(
d(n)− 1

)
.
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If 4 | n, n = ab with a, b of the same parity and a 6= b, we must have a, b both even. So
in this case, we are looking at factoring n

4
into two unequal factors. The number of such

solutions, as resolved in the previous case, is obtained by replacing n by n
4
. This ends the

proof. ¤

Theorem 6. Let n ∈ N. If n = pe1
1 pe2

2 · · · pek
k , with p1 < p2 < · · · < pk, the number of

Pythagorean triples {a, b, n}, where 3 ≤ n < max{a, b}, is given by

P1(n) =





1

2

{
(2e1 + 1)(2e2 + 1)(2e3 + 1) · · · (2ek + 1)− 1

}
if n is odd;

1

2

{
(2e1 − 1)(2e2 + 1)(2e3 + 1) · · · (2ek + 1)− 1

}
if n is even.

Moreover, P1(1) = P1(2) = 0.

Proof. Observe that P1(n) counts the number of Pythagorean triples {a, b, n} where n <
max{a, b}. This amounts to counting the number of solutions (a, b) of a2 − b2 = n2, and
Theorem 5 together with the formula for d(n) provides the result. ¤

The number of ways of expressing n as a sum of two squares, counting all permutations
and changes of sign as different representations, equals 4

(
d1(n)− d3(n)

)
, where di(n) is the

number of positive divisors of n of the form 4k + i; see [7, pp. 166-167] for details.

Theorem 7. Let n ∈ N. If n = 2epe1
1 pe2

2 · · · per
r qf1

1 qf2

2 · · · qfs
s , where each prime pi ≡ 1

(mod 4) and each prime qi ≡ 3 (mod 4), the number of Pythagorean triples {a, b, n}, where
n > max{a, b} is given by

P2(n) =
1

2

{
(2e1 + 1)(2e2 + 1) · · · (2er + 1)− 1

}
.

Proof. Recall that P2(n) counts the number of Pythagorean triples {a, b, n} where n >
max{a, b}. This amounts to counting the number of solutions {a, b} of a2 + b2 = n2 with
a, b ∈ N. By the result referenced to in the paragraph immediately preceding this Theorem,
we know this to equals 4

(
d1(n

2) − d3(n
2)

)
, where di(n) is the number of positive divisors

of n of the form 4k + i. However, all permutations and changes of sign count as different
representations in this formula, and 0 is counted. Hence, with 1 ≤ a < b, we get P2(n) =
1
2

(
d1(n

2)− d3(n
2)− 1

)
.

Let n = 2en1n2, where n1 = pe1
1 pe2

2 · · · per
r , n2 = qf1

1 qf2

2 · · · qfs
s , with pi ≡ 1 (mod 4) and qj ≡

3 (mod 4). We have d1(n
2)−d3(n

2) = d(n2
1)

{
d1(n

2
2)−d3(n

2
2)

}
since each divisor of n2

1 is of the
form 4k + 1 and does not affect the difference d1− d3. There is a one-to-one correspondence
between the divisors of n2

2 and the set of all s-tuple (v1, v2, . . . , vs), with 0 ≤ vj ≤ 2fj for 1 ≤
j ≤ s. If we list these s-tuples in order, (0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), . . . , (2f1, 0, 0, . . . , 0),
(2f1, 1, 0, . . . , 0), . . . , (2f1, 2f2, 2f3, . . . , 2fs), we observe that the divisors alternate between
the forms 4k + 1 and 4k + 3, starting and ending with divisors of the form 4k + 1. Hence
d1(n

2
2)− d3(n

2
2) = 1, so that d1(n

2)− d3(n
2) = d(n2

1). This proves the result. ¤

Theorems 6 and 7 together complete the solution of P(n) = P1(n) + P2(n) in all cases.
We record this in our next result.
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Theorem 8. For n ≥ 3, let n1 denote the largest odd divisor of n each of whose prime
divisors is of the form 4k + 1, with n1 = 1 if no such prime divisor exists. Then

P(n) =





1

2

{
d(n2) + d(n2

1)
}− 1 if n is odd;

1

2

{
d((n

2
)2) + d(n2

1)
}− 1 if n is even,

where d(n) denotes the number of positive divisors of n. Moreover, P(1) = P(2) = 0.

We note that Theorem 8 implies

P(2e) = e− 1, P(pe) = 2e, P(qe) = e, (2)

if p and q are primes with p ≡ 1 (mod 4) and q ≡ 3 (mod 4). In fact, 2e+1 and qe are
interchangeable in the formula for P(n) since both contribute equally to the sum in P(n).
We close this section with the following easy but useful consequence of Theorem 8.

Corollary 1. If m is odd and e ≥ 1, then

P(2e m) = P(m) + (e− 1) · d(m2).

Proof. Let m be odd and e ≥ 1. Observe that the largest divisors each of whose prime
factors is of the form 4k + 1 of 2e m and m are equal; set this divisor as m1. From Theorem
8 we have

P(2e m)−P(m) =
1

2

{
(2e− 1) d(m2) + d(m2

1)
}− 1

2

{
d(m2) + d(m2

1)
}

= (e− 1) · d(m2).

¤

4. Optimal P-numbers

In this closing section we extend the results of Sections 2 and 3. For each n ∈ N, we seek the
least positive integer `(n) (respectively, `?(n)) such that there are at least n Pythagorean
(respectively, primitive Pythagorean) triples {a, b, n}. Lemma 2 not only guarantees the
existence of `(n) but also shows that `(n) ≤ 2n+1.

Theorem 9. Let n ∈ N, and let k be such that 2k−1 < n ≤ 2k. Let `?(n) denote the least
positive integer that is a member of (at least) n primitive Pythagorean triples. Then, for
n ≥ 3,

`?(n) = 4p1p2 · · · pk,

where pi is the ith odd prime. Moreover, `?(1) = 3 and `?(2) = 5.

Proof. Fix n ∈ N. We recall that P?(m) is always a power of 2 by Theorems 1 and 4. Let
k be such that 2k−1 < n ≤ 2k. Suppose m is even and P?(m) ≥ 2k. From Theorem 1 any
minimum m must satisfy 4 | m and ω(m) − 1 = k. This is achieved with m = 4p1p2 · · · pk,
where pi is the ith odd prime. If m is odd and P?(m) ≥ 2k, we consider two cases. The
minimum among m which have at least one prime divisor of the form 4k+3 is p1p2 · · · pkpk+1

by Theorem 4. The minimum among m all of whose prime divisors are of the form 4k + 1
is p′1p

′
2 · · · p′k, where p′i denotes the ith prime of the form 4k + 1. Therefore, the minimum m

for which P?(m) ≥ n is

min{4p1p2 · · · pk, p1p2 · · · pkpk+1, p
′
1p
′
2 · · · p′k} = 4p1p2 · · · pk,
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except that the minimum is 3 when k = 0 (so n = 1) and 5 when k = 1 (so n = 2). This
completes the proof. ¤
The following definition is useful in restating the result in Theorem 9 and also in the deter-
mination of `(n).

Definition 1. Let m0 ∈ N. We say that m0 is an optimal P-number (respectively, optimal
P?-number) provided P(m0) > P(m) (respectively, P?(m0) > P?(m)) whenever 1 ≤
m < m0.

Theorem 9 states that the sequence of optimal P?-numbers, with their P?-values, is given
by

P?(3) = 1, P?(5) = 2, P?(4p1p2 · · · pk) = 2k for k ≥ 2

where pi denotes the ith odd prime.
The optimal P-numbers are reminiscent of “highly composite numbers”, introduced by

Ramanujan, to study numbers that have a larger number of divisors than any number less
than it. We explore the problem of determining `(n) by providing some necessary conditions
for the sequence of optimal P-numbers. In order to study the optimal P-numbers, we not
only make repeated use of Theorem 8, but also its two Corollaries. The following result
puts together some necessary conditions that the prime factorization of optimal P-numbers
satisfy. However, there does not seem to be a nice formulation for `(n) or even for optimal
P-numbers, unlike the analogous case for primitive Pythagorean triples.

Lemma 3. Let n, k be integers, with 0 ≤ k ≤ n, and let c ∈ R+. Consider the function

f(x1, x2, . . . , xn) =
n∏

i=1

xi +
k∏

i=1

xi,

with each xi > 0 and such that x1 +x2 + · · ·+xn = c, and where we use the usual convention
that the empty product equals 1. Then f has a maximum when

(a) xi = c/n for 1 ≤ i ≤ n, provided k = 0 or k − n;
(b) xi = x for 1 ≤ i ≤ k, xi = y for k + 1 ≤ i ≤ n, and

(c− nx)yn−k−1 + (n− k) = 0,

provided 1 ≤ k ≤ n− 1.

Proof.

(a) Observe that both k = 0 and k = n reduce to the problem of maximizing the product
of n positive numbers whose sum is fixed. From the Arithmetic Mean-Geometric
Mean inequality, this occurs precisely when all xi’s are equal.

(b) Let 1 ≤ k ≤ n − 1. If Di denotes the partial derivative of f with respect to xi,
then setting D1 = D2 = · · · = Dk gives x1 = x2 = · · · = xk = x (say), and
Dk+1 = Dk+2 = · · · = Dn gives xk+1 = xk+2 = · · · = xn = y. For this extrema,
kx + (n− k)y = c. If we now set

F (x) =
1

(n− k)n−k
xk(c− kx)n−k + xk,
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a routine computation shows the condition on the extremum for the function F is

(c− nx)yn−k−1 + (n− k) = 0.

¤
Theorem 10. Suppose p1, p2, . . . , pr are primes of the form 4k + 1 and q1, q2, . . . , qs are

primes of the form 4k + 3. Among all N of the form 2e
∏r

i=1 pαi
i

∏s
j=1 q

βj

j with
∑r

i=1 αi +∑s
j=1 βj fixed, any one with largest P-value satisfies |αi − αj| ≤ 1 and |βi − βj| ≤ 1, for

each i 6= j.

Proof. Consider any N of the form 2e
∏r

i=1 pαi
i

∏s
j=1 q

βj

j = 2em with
∑r

i=1 αi+
∑s

j=1 βj fixed.

Since 2α1+1, . . . , 2αr +1, 2β1+1, . . . , 2βs +1 has a fixed sum, its product d(m2) is maximum
when the terms are chosen as equal as possible. Thus |αi − αj| ≤ 1 and |βi − βj| ≤ 1 for
i 6= j, and by Corollary 1, it is sufficient to prove the assertion for odd N . For the rest of
the proof, we assume e = 0.

From Theorem 8,

2{P(N) + 1} = d(N2) + d(N2
1 ) =

r∏
i=1

(2αi + 1)
s∏

j=1

(2βj + 1) +
r∏

i=1

(2αi + 1).

In order to maximize P(N), by Lemma 3 we must choose the terms from each of the
sequences {2αi + 1}r

i=1, {2βj + 1}s
j=1 as equal as possible. This completes the proof of our

assertion. ¤
We are now in a position to state our final result about optimal P-numbers.

Theorem 11. Let
N = 2e pα1

1 pα2
2 · · · pαr

r qβ1

1 qβ2

2 · · · qβs
s

be the prime factor decomposition of an optimal P-number, where {pi}r
i=1 is an increasing

sequence of primes of the form 4k +1 and {qj}s
j=1 is an increasing sequence of primes of the

form 4k + 3. Then

(a) each of the sequences {αi}r
i=1 and {βj}s

j=1 is nonincreasing. Moreover, α1 − αr ≤ 1,
β1 − βs ≤ 1, and if N is even, then e ≥ 1 + max{α1, β1};

(b) the sequence of primes {p1, p2, . . . , pr} and {q1, q2, . . . , qs} are consecutive;
(c) each prime less than qs and of the form 4k + 1 is a divisor of N ;
(d) each prime less than pk and of the form 4k + 3 is a divisor of N , where pk is the

largest prime for which p2
k | N ;

(e) if N is odd, then N ∈ {3, 5, 15};
(f) if N is even, then 60 | N except if N ∈ {12, 24, 40, 48}.

Proof. Throughout this proof, we assume that N is an optimal P-number with the prime
factorization as stated in the theorem.

(a) Suppose N = mpαi
i p

αj

j , with pi < pj and αi > αj. Then N ′ = mp
αj

i pαi
j < N

and P(N ′) = P(N) proves that N cannot be an optimal P-number. The same
argument carries over if we replace pi, pj by qi, qj.

The condition on the difference between the largest and smallest exponents for
both sequences {αi}r

i=1 and {βj}s
j=1 follow from Theorem 10. If N is even, observe

that replacing either a q1 by a 2 or a p1 by a 22 results in a smaller number with at
least as large a P-value provided e ≤ β1 and e ≤ α1.
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(b) Suppose p | N , p′ - N for primes p′, p with p′ < p and p′ ≡ p (mod 4). If N = mpα,
where p - m, then N ′ = mp′α < N satisfies P(N ′) = P(N), thereby proving that N
cannot be an optimal P-number.

(c) Suppose p < qs is prime of the form 4k + 1. If p - N , replacing a factor qs of N by p
results in a smaller number with a larger P-value. So N must be divisible by each
of the prime factors of the form 4k + 1 that are less than qs.

(d) Suppose pk is the largest prime such that p2
k | N . If q < pk is prime of the form 4k+3

and q - N , replacing a factor pk of N by q results in a smaller number with a larger
P-value. So N must be divisible by each of the prime factors of the form 4k +3 that
are less than pk.

(e) Suppose N is odd and N /∈ {3, 5, 15}. If N has at least two prime factors of the form
4k+3, not necessarily distinct, replacing these by 22 results in a smaller number with
at least as large a P-value. Otherwise, replacing any two prime factors of N by 23

again produces a smaller number with at least as large a P-value. This proves our
assertion.

(f) Suppose N is even. Then 4 | N since P(2m) = P(m) for odd m. Also, N cannot
be a power of 2 since 9e− 40 = P(2e−4 · 3 · 5) > P(2e) = e− 1 for e ≥ 5, and since
P(1) = P(2), P(3) = P(4), P(5) = P(8) and P(15) > P(16). By parts (b), (c)
and (d), if N has only one odd prime divisor, that must be either 3 or 5, and if N
has at least two odd prime divisors, both 3 and 5 must divide N . Thus we are done
except for proving the exceptional cases.

We now show that if N is of the form 2e · 3f or 2e · 5f , then f = 1. To do this, it
is enough to show that f ≤ 1 in each case. Indeed, if f ≥ 2, replacing a 2 · 3 by 5 in
the first case and replacing a 2 · 5 by 7 in the second case results in a smaller number
with larger P-value. Thus N must be of the form 2e · 3 or 2e · 5.

If N = 2e · 3 and e ≥ 5, replacing 23 by 5 results in a smaller number with a larger
P-value. Each of the numbers 2e · 3, 2 ≤ e ≤ 4, is optimal, as can be verified. If
N = 2e · 5 and e ≥ 4, replacing 22 by 5 results in a smaller number with a larger
P-value, and it can be verified that only 23 · 5 is optimal.

¤
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We close this article with a list of the optimal P-numbers less than 10000.

n prime factorization of n P(n)

3 3 1

5 5 2

12 22 · 3 4

15 3 · 5 5

24 23 · 3 7

40 23 · 5 8

48 24 · 3 10

60 22 · 3 · 5 14

120 23 · 3 · 5 23

240 24 · 3 · 5 32

360 23 · 32 · 5 38

420 22 · 3 · 5 · 7 41

720 24 · 32 · 5 53

840 23 · 3 · 5 · 7 68

1560 23 · 3 · 5 · 13 71

1680 24 · 3 · 5 · 7 95

2520 23 · 32 · 5 · 7 113

3360 25 · 3 · 5 · 7 122

5040 24 · 32 · 5 · 7 158

8400 24 · 3 · 52 · 7 159

9240 23 · 3 · 5 · 7 · 11 203

Table of optimal P-numbers less than 10000.
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