COLLECTIONS OF MUTUALLY DISJOINT CONVEX SUBSETS OF A TOTALLY ORDERED SET

TYLER CLARK AND TOM RICHMOND

ABSTRACT. We present a combinatorial proof of an identity for F_{2n+1} by counting the number of collections of mutually disjoint convex subsets of a totally ordered set of n points. We discuss how the problem is motivated by counting certain topologies on finite sets.

Theorem. Given a totally ordered set X of n points, the number C(n) of collections of mutually disjoint convex subsets of X is given by

$$C(n) = 1 + \sum_{p=1}^{n} \sum_{j=1}^{p} {n-p+j \choose j} {p-1 \choose j-1} = F_{2n+1}.$$

Proof. For any natural number k, let \underline{k} denote the set $\{1, 2, \ldots, k\}$ with the usual total order $1 < 2 < \cdots < k$. Note that a convex subset of \underline{k} is simply an interval in \underline{k} . Suppose \mathcal{C} is a collection of mutually disjoint convex subsets of $X = \underline{n}$. We will call the members of \mathcal{C} blocks. If \mathcal{C} has j blocks $(j = 0, \ldots, n)$ and $|\bigcup \mathcal{C}| = p$, these p elements may be divided into j convex blocks in $\binom{p-1}{j-1}$ ways by inserting j-1 dividers into the p-1 gaps between the p points. Now we may totally order the n-p points and j blocks, by choosing which of the n-p+j items will be blocks, in $\binom{n-p+j}{j}$ ways. Summing as p goes from 1 to p, and adding the one exceptional case corresponding to j=0, we have

$$C(n) = 1 + \sum_{p=1}^{n} \sum_{j=1}^{p} {n-p+j \choose j} {p-1 \choose j-1}.$$
 (1)

We may also find a recursive formula for C(n). For any collection \mathcal{C} of mutually disjoint convex subsets of \underline{n} , consider the point $n \in \underline{n}$. Now $n \notin \bigcup \mathcal{C}$ if and only if \mathcal{C} is one of the C(n-1) collections of mutually disjoint convex subsets of $\underline{n-1}$. Furthermore, $n \in \{j+1,\ldots,n\} \in \mathcal{C}$ where, for now, $j \in \{1,2,\ldots,n-1\}$, if and only if $\mathcal{C} \setminus \{\{j+1,\ldots,n\}\}$ is one of the C(j) collections of mutually disjoint convex subsets of \underline{j} . If j=0, that is, if $n \in \{1,2,\ldots,n\} \in \mathcal{C}$, then $\mathcal{C} = \{\underline{n}\}$ is the unique acceptable collection, and for this reason we adopt the convention that C(0) = 1. Now summing over all cases $n \notin \bigcup \mathcal{C}$ and $n \in \{j+1,\ldots,n\} \in \mathcal{C}$ for $j=0,1,\ldots,n-1$, we have

$$C(n) = C(n-1) + \sum_{j=0}^{n-1} C(j).$$
(2)

From either formula (1) or (2), we find the initial values of the sequence $\{C(n)\}_{n=0}^{\infty}$ to be $1, 2, 5, 13, 34, 89, \ldots$, which agree with the values of F_{2n+1} . Suppose $C(n) = F_{2n+1}$ for $n = 1, 2, \ldots, k-1$. From the recurrence formula (2) we have

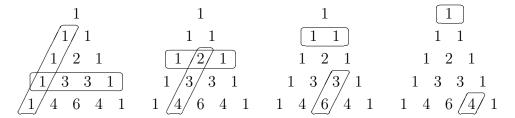
FEBRUARY 2010 77

$$C(k) = F_{2k-1} + \sum_{j=0}^{k-1} F_{2j+1}.$$

Applying the identity $\sum_{j=0}^{m} F_{2j+1} = F_{2m+2}$ (Identity #2 in [2], noting their convention that $f_n = F_{n+1}$), we have $C(k) = F_{2k-1} + F_{2k} = F_{2k+1}$. With the initial cases, this shows that $C(n) = F_{2n+1}$ for all natural numbers n.

The second half of the proof above, showing that $C(n) = F_{2n+1}$, can also be accomplished using a tiling argument of Anderson and Lewis [1] which allows tiles of any length. Think of a convex subset of \underline{k} as a white tile on a $1 \times k$ strip. Then a collection of mutually disjoint convex subsets of \underline{k} may be represented by a tiling of a $1 \times k$ strip by white tiles of various lengths and red squares in any remaining gaps, and the number of such tilings is C(k). Having tiled a $1 \times k$ strip, we may obtain a suitable tiling of a $1 \times (k+1)$ strip either by appending a red square in the k+1st position (producing C(k) tilings), appending a white square in the k+1st position (producing C(k) tilings), or, if the tile covering the kth slot is white, it may be expanded to cover the k+1st slot. To count these expansions easily, expand the tile covering the kth slot, red or white, to cover the k+1st slot (in C(k) ways), then remove those C(k-1) ending in a red domino (and leaving a suitable tiling of a $1 \times (k-1)$ strip). Thus, C(k+1) = 3C(k) - C(k-1). This recurrence relation is satisfied by F_{2n+1} (see Identity #7 in [2]), and since the initial terms agree, we conclude that $C(n) = F_{2n+1}$ for all natural numbers n. The authors are grateful to the referee for pointing out this tiling argument.

For a fixed p, the second factors $\binom{p-1}{j-1}$ in the double sum of the theorem constitute the (p-1)st row of Pascal's triangle, while the values of the first factors $\binom{n-p+j}{j} = \binom{n-p+j}{n-p}$ are a subset of the (n-p)th diagonal. Thus, the double-sum formula for $F_{2n+1}-1$ can be viewed as the sum of dot products of vectors in Pascal's triangle, as illustrated below for n=4.



The sum of the dot products of the circled pairs of vectors is $F_{2(4)+1} - 1$.

Our motivation for this problem arose from counting certain finite topologies as described below. If j is any point in a finite topological space, let N(j) be the intersection of all open sets containing j.

Corollary. Let \mathcal{T} be the set of topologies τ on \underline{n} such that the basis $\{N(j): j \in \underline{n}\}$ consists of a collection \mathcal{C} of mutually disjoint convex subsets of \underline{n} , or such a collection \mathcal{C} together with \underline{n} . Then $|\mathcal{T}| = F_{2n+1} - 1$.

The corollary follows from the almost one-to-one correspondence between the topologies of \mathcal{T} and the collections \mathcal{C} counted by C(n), where for $j \in \underline{n} \setminus \bigcup \mathcal{C}$, we take $N(j) = \underline{n}$.

However, the collection having no blocks generates the same topology—namely the indiscrete topology—as the collection having a single block containing all the points.

References

- [1] P. G. Anderson and R. H. Lewis, *Board tilings of the second kind*, Proceedings of the Thirteenth International Conference on Fibonacci Numbers and Their Applications, Patras, Greece, July 2008. Florian Luca (Ed.), Utilitas Mathematica Publishing, Inc. (to appear).
- [2] A. Benjamin and J. Quinn, *Proofs that Really Count*, Dolciani Mathematical Expositions no. 27, Mathematical Association of America, Washington, DC, 2003.

MSC2000: 11B39, 05A18, 54F05

Department of Mathematics, Western Kentucky University Honors College, 1906 College Heights Blvd, Bowling Green, KY 42101-1078

 $E ext{-}mail\ address: thomas.clark973@wku.edu}$

Department of Mathematics, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101-1078

E-mail address: tom.richmond@wku.edu

FEBRUARY 2010 79