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Abstract. If τ is any root of the Tribonacci polynomial t(x) = x3 − x2 − x − 1 in the
Galois field Fp where p is a prime, p ≡ 1 (mod 3), then

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).

More generally, if χ is a root of t(x) in any field extension G of Fp, then 2χ is a cubic residue
of the field G.

1. Introduction

The quadratic character of the root θ = (1 +
√

5)/2 of the Fibonacci polynomial f(x) =
x2 − x − 1 was examined by E. Lehmer in [2]. The way we understand Lehmer’s Theorem
1 in [2, p. 137], which was written in a different form, is as follows. Let p be a prime in the
form p = a2 + b2 where a, b ∈ Z and a ≡ 1 (mod 4). Furthermore, suppose that θ is a root
of f in the Galois field Fp; then we have

θ
p−1
2 =

(
θ

p

)
=

{
1 if p = 20m + 1, b ≡ 0 (mod 5) or p = 20m + 9, a ≡ 0 (mod 5)

−1 if p = 20m + 1, a ≡ 0 (mod 5) or p = 20m + 9, b ≡ 0 (mod 5).

In this paper we let τ be an arbitrary root of the Tribonacci polynomial t(x) = x3−x2−x−1
in the Galois field Fp where p is a prime, p ≡ 1 (mod 3). The purpose of our article is to
prove the following identity for the cubic character of τ and 2 in Fp:

τ
p−1
3 =

(
τ

p

)

3

= 2
2(p−1)

3 .

Moreover, if χ is a root of t(x) in any field extension G of Fp, then we show that 2χ is a
cubic residue of the field G, i.e. there exists ω ∈ G such that 2χ = ω3.

2. Preliminaries

Let F be a field in which there exists an element ε 6= 1 such that ε3 = 1. Then char F 6= 3
and ε2 + ε + 1 = 0. For a, b, c ∈ F, put

w1(x) = x3 + ax2 + bx + c,

w2(x) = w1(εx) = x3 + ε2ax2 + εbx + c,

w3(x) = w1(ε
2x) = x3 + εax2 + ε2bx + c.

By direct calculation we get the following lemma.

The second author was supported by the Grant Agency of the Czech Republic (Algebraic, Analytic and
Combinatorial Number Theory, 201/07/0191) and the results were acquired using the subsidization of the
Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM0021630518 “Simulation
modeling of mechatronic systems”.
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Lemma 2.1. w1(x)w2(x)w3(x) = x9 + (a3 − 3ab + 3c)x6 + (b3 − 3abc + 3c2)x3 + c3.

For c ∈ F put

A(c) = −18c2 + 3,

B(c) = −9c2 − 27c− 24,

C(c) = 9c2 − 27c + 28,

f(x, c) = x3 + A(c)x2 + B(c)x + C(c) ∈ F[x].

Clearly, f(x− 1) = x3 − 15x2 − 6x + 64 = (x− 2)g(x), where g(x) = x2 − 13x− 32.
Furthermore, we shall consider the following polynomials over the field F:

t(x) = x3 − x2 − x− 1, u(x) = t(x3) = x9 − x6 − x3 − 1.

The polynomial t(x) is the well-known Tribonacci polynomial. Let c ∈ {−1,−ε,−ε2}. Using
the identities c3 = −1, c4 = −c, c6 = 1 and c−1 = −c2, we obtain the following lemma.

Lemma 2.2. For any c ∈ {−1,−ε,−ε2}, b ∈ F, b 6= 0, we have

(b3 + 3c2 + 1)3

27b3c3
− b3+3c2+1

c
+ 3c + 1 = −b9 + A(c)b6 + B(c)b3 + C(c)

27b3
= −f(b3, c)

27b3
.

Theorem 2.3. Let char F 6= 2, 7. Then we have u(x) = w1(x)w2(x)w3(x) if and only if

c ∈ {−1,−ε,−ε2}, f(b3, c) = 0, b 6= 0 and a =
b3 + 3c2 + 1

3bc
. (2.1)

Proof. Using Lemma 2.1 we have u(x) = w1(x)w2(x)w3(x) if and only if

a3 − 3ab + 3c = −1,

b3 − 3abc + 3c2 = −1, (2.2)

c3 = −1.

First, assume that the identities (2.2) are valid. Then c ∈ {−1,−ε,−ε2}. If b = 0, then from
the second identity in (2.2) we get 3c2 = −1 and thus 27 = −1, which is a contradiction
with char F 6= 2, 7. Consequently, b 6= 0 and a = (b3 + 3c2 + 1)/3bc. Substituting into the
first identity in (2.2), we have

(b3 + 3c2 + 1)3

27b3c3
− b3 + 3c2 + 1

c
+ 3c + 1 = 0.

Combining Lemma 2.2 with c3 = −1, we obtain f(b3, c) = 0 and (2.1) follows.
Conversely, let c ∈ {−1,−ε,−ε2}, f(b3, c) = 0, b 6= 0, and a = (b3 + 3c2 + 1)/3bc. Then

c3 = −1 and, from a = (b3+3c2+1)/3bc, we have b3−3abc+3c2 = −1. Put d = a3−3ab+3c.
Then by Lemma 2.2 we have

d =
(b3 + 3c2 + 1)3

27b3c3
− b3 + 3c2 + 1

c
+ 3c = −f(b3, c)

27b3
− 1 = −1

as required. ¤

Now we recall a well-known Stickelberger parity theorem [3] for the case of a cubic poly-
nomial [5, p. 189]. See also Dickson’s history [1, pp. 249–251] or consult [4, p. 42].
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Theorem 2.4. Let N be the number of solutions of x3 + Ax2 + Bx + C ≡ 0 (mod p) where
A,B, C ∈ Z and let

D = A2B2 − 4B3 − 4A3C − 27C2 + 18ABC (2.3)

be the discriminant of the cubic polynomial x3 + Ax2 + Bx + C. If p is a prime, p > 3 and
p - D, we have:

N = 1 if and only if (D/p) = −1,

N = 0 or N = 3 if and only if (D/p) = 1.
(2.4)

Particularly, for the Tribonacci polynomial t(x), we obtain the following corollary.

Corollary 2.5. Let N be the number of distinct roots of the Tribonacci polynomial t(x) in
the field Fp where p is an arbitrary prime, p 6= 2, 11. Then t(x) does not have multiple roots
in Fp, and we have:

N = 1 if and only if (p/11) = −1,

N = 0 or N = 3 if and only if (p/11) = 1.
(2.5)

Proof. By (2.3), D = −44 = −22 ·11. For p = 3, we have (3/11) = 1 and N = 0. Calculating
the Legendre - Jacobi symbol, we get (−44/p) = (p/11) and (2.5) follows from (2.4). ¤
Lemma 2.6. For c ∈ {−1,−ε,−ε2}, let Dc be the discriminant of f(x, c). Then Dc =
866052 = 22 · 39 · 11 and (Dc/p) = (p/11).

Proof. For c = −1 we have A(−1) = −15, B(−1) = −6, C(−1) = 64 and, from (2.3), it
follows that D−1 = 866052. For c ∈ {−ε,−ε2} we use the identity c2−c+1 = 0 to determine
Dc. From the quadratic reciprocity law and from further properties of the Legendre - Jacobi
symbol it follows that(

866052

p

)
=

(
3

p

)(
11

p

)
= (−1)

p−1
2

(p

3

)
(−1)

5(p−1)
2

( p

11

)

= (−1)3(p−1)

(
1

3

)( p

11

)
=

( p

11

)
.

¤
From now on, we will assume that p is an arbitrary prime such that p ≡ 1 (mod 3)

and F is an arbitrary finite field with characteristic p. Then there is an n ∈ N such that
F = Fpn . Let F× denote the multiplicative group of the field F. This group is cyclic of
order pn − 1 and its generator will be denoted by g. For any ξ ∈ F×, there is exactly one
integer ind ξ such that ξ = gind ξ and 0 ≤ ind ξ ≤ pn − 2. Clearly, for ξ1, ξ2 ∈ F×, we
have ind ξ1ξ2 ≡ ind ξ1 + ind ξ2 (mod pn − 1). We can assume that ε = g(pn−1)/3. Then
ind ε = (pn − 1)/3 and ind ε2 = 2(pn − 1)/3. For e ∈ {0, 1, 2} let

Ce = {ξ ∈ F×; ind ξ ≡ e (mod 3)} = {ξ ∈ F×; ξ = g3k+e, k ∈ Z, 0 ≤ k < (pn − 1)/3}.
We will call the sets C0, C1, C2 the cubic classes of the field F. Clearly, {C0, C1, C2} is a
partition of F×. For ξ ∈ F× we have ξ ∈ C0 if and only if there exists ω ∈ F× such that
ω3 = ξ. Let us call the elements ξ′s with this property the cubic residues of the field F.

Lemma 2.7. Let α, β, γ ∈ F and αβγ ∈ C0. Then there exists e ∈ {0, 1, 2} such that
{α, β, γ} ⊆ Ce or α, β, γ belong to distinct cubic classes of the field F.
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Proof. Suppose that there are e1, e2 ∈ {0, 1, 2}, e1 6= e2 such that α, β ∈ Ce1 , γ ∈ Ce2 . Then
ind αβγ ≡ ind α + ind β + ind γ (mod pn − 1) and thus ind αβγ ≡ 2e1 + e2 (mod 3).
On the other hand, we have ind αβγ ≡ 0 (mod 3), which implies 2e1 + e2 ≡ 0 (mod 3).
Consequently, we have e1 = e2 and a contradiction follows. ¤

For the next theorem we need the following lemma which can be verified by direct com-
putation.

Lemma 2.8. The Tribonacci polynomial t(x) has a unique root in F7 equal to 3. In the field
F49, the polynomial t(x) has three distinct roots 3,−1 + 5i,−1− 5i where i ∈ F49, i2 = −1.
These roots belong to the same residue class of F49 and, for any χ ∈ {3,−1 + 5i,−1 − 5i},
we have (2χ)(72−1)/3 = 1. Consequently, if t(x) has three distinct roots in an extension field
F of F7, then F is an extension field of F49 and 3,−1 + 5i,−1 − 5i are roots of t(x) in F
belonging to the same cubic class of F.

Theorem 2.9. Let t(x) have three distinct roots α, β, γ ∈ F. Then
(i) There is an e1 ∈ {0, 1, 2} such that {α, β, γ} ⊆ Ce1.
(ii) If char F 6= 7, then, for each c ∈ {−1,−ε,−ε2}, the polynomial f(x, c) has three

distinct roots in F belonging to the same cubic class Ce2 of F where e2 ∈ {0, 1, 2} and
e1 + e2 ≡ 0 (mod 3). In particular, for any τ ∈ {α, β, γ}, the element 2τ is a cubic residue
of the field F.

Proof. (i) For p = 7 the first part of the theorem follows from Lemma 2.8. Let p 6= 7.
Suppose that for some e ∈ {0, 1, 2} the inclusion {α, β, γ} ⊆ Ce is not valid. From the Viète
equation αβγ = 1 it follows that αβγ ∈ C0 and, by Lemma 2.7, the roots α, β, γ belong to
distinct cubic classes of F. We can assume that α ∈ C0, β ∈ C1, γ ∈ C2. Then there is ξ1 ∈ F
such that α = ξ3

1 and thus t(x) = (x− ξ3
1)(x− β)(x− γ). This implies that ξ3

1βγ = 1.
Since β ∈ C1, the polynomial x3 − β is irreducible over F. Let K be the splitting field of

x3−β over F. Then there is ξ2 ∈ K such that β = ξ3
2 and x3−β = (x−ξ2)(x−εξ2)(x−ε2ξ2).

Let ξ3 = 1/(ξ1ξ2). As ξ3
1βγ = 1, we have ξ3

3 = 1/(ξ3
1ξ

3
2) = 1/(ξ3

1β) = γ and thus x3 − γ =
(x − ξ3)(x − εξ3)(x − ε2ξ3). Let w1(x) = (x − ξ1)(x − ξ2)(x − ξ3), w2(x) = w1(εx) =
(x− ε2ξ1)(x− ε2ξ2)(x− ε2ξ3), w3(x) = w1(ε

2x) = (x− εξ1)(x− εξ2)(x− εξ3). In K we have
t(x) = (x − ξ3

1)(x − ξ3
2)(x − ξ3

3). Hence u(x) = w1(x)w2(x)w3(x). Let a = −ξ1 − ξ2 − ξ3,
b = ξ1ξ2 + ξ1ξ3 + ξ2ξ3. Then w1(x) = x3 + ax2 + bx − 1, w2(x) = x3 + ε2ax2 + εbx − 1,
w3(x) = x3 + εax2 + ε2bx− 1. Using Theorem 2.3 we get b 6= 0 and f(b3,−1) = 0. After a
short calculation we obtain

b3 = ξ3
1ξ

3
2 + ξ3

1ξ
3
3 + ξ3

2ξ
3
3 + 3(ξ3

1ξ
2
2ξ3 + ξ3

1ξ2ξ
2
3 + ξ2

1ξ
3
2ξ3 + ξ1ξ

3
2ξ

2
3 + ξ2

1ξ2ξ
3
3 + ξ1ξ

2
2ξ

3
3) + 6ξ2

1ξ
2
2ξ

2
3 .

Let u = ξ3
1ξ

3
2 + ξ3

1ξ
3
3 + ξ3

2ξ
3
3 +6ξ2

1ξ
2
2ξ

2
3 , v = ξ3

1ξ
2
2ξ3 + ξ3

1ξ2ξ
2
3 + ξ2

1ξ
3
2ξ3 + ξ1ξ

3
2ξ

2
3 + ξ2

1ξ2ξ
3
3 + ξ1ξ

2
2ξ

3
3 .

Then b3 = u + 3v and, for u, we have u = αβ + αγ + βγ + 6 = 5. Clearly, ξ3 = ξ2
2/(ξ1β) and

ξ2
3 = ξ2/(ξ

2
1β). This implies that

v =
ξ3
1ξ

4
2

ξ1β
+

ξ3
1ξ

2
2

ξ2
1β

+
ξ2
1βξ2

2

ξ1β
+

ξ1βξ2

ξ2
1β

+ξ2
1ξ2γ+ξ1ξ

2
2γ = ξ2

2

(
ξ1

β
+ ξ1 + ξ1γ

)
+ξ2

(
ξ2
1 +

1

ξ1

+ ξ2
1γ

)
.

Let r = ξ1/β + ξ1 + ξ1γ, s = ξ2
1 + 1/ξ1 + ξ2

1γ. Then r, s ∈ F and b3 = 3rξ2
2 + 3sξ2 + 5. Since

for b3 6= 2, we have g(b3) = 0 and [K : F] = 3, we obtain b3 ∈ F. Clearly, the elements
1, ξ2, ξ

2
2 ∈ K are linear independent over F and thus we have r = s = 5 − b3 = 0. Hence

b3 = 5. Consequently, 5 ≡ 2 (mod p) or 5 is a root of g(x) in F. As g(5) = −23 · 32 = 0, we
have a contradiction with char F 6= 2, 3. This proves part (i).
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(ii) According to (i) there exists e1 ∈ {0, 1, 2} such that {α, β, γ} ⊆ Ce1 . Therefore,
there exist ω1, ω2 ∈ F with the property β = αω3

1, γ = αω3
2 and 1 6= ω3

1 6= ω3
2 6= 1. Let

c ∈ {−1,−ε,−ε2}. Since 1 = αβγ = α3ω3
1ω

3
2, we can choose the element ω1 such that

αω1ω2 = −c. Let K be the splitting field of x3 − α and let ξ ∈ K such that ξ3 = α. Then
ξ3ω1ω2 = −c. Set H1 = ω1 + ω2 + ω1ω2, H2 = ω1 + εω2 + ε2ω1ω2, H3 = ω1 + ε2ω2 + εω1ω2.
Using 1 6= ω3

1 6= ω3
2 6= 1, we can prove H3

1 6= H3
2 6= H3

3 6= H3
1 . Furthermore, set

w11(x) = (x− ξ)(x− ξω1)(x− ξω2) = x3 + a1x
2 + b1x + c,

w21(x) = (x− εξ)(x− ε2ξω1)(x− ξω2) = x3 + a2x
2 + b2x + c,

w31(x) = (x− ε2ξ)(x− εξω1)(x− ξω2) = x3 + a3x
2 + b3x + c,

and, for i ∈ {1, 2, 3}, set wi2(x) = wi1(εx), wi3(x) = wi1(ε
2x). Then bi = ξ2Hi, i ∈

{1, 2, 3}. Since εjξ, εjξω1, εjξω2, j ∈ {0, 1, 2} are distinct roots of u(x), we have u(x) =
wi1(x)wi2(x)wi3(x) for each i ∈ {1, 2, 3}. Theorem 2.3 then implies f(b3

i , c) = 0, bi 6= 0. Thus,
b3
i , i ∈ {1, 2, 3} are distinct roots of f(x, c). Since b3

i α = ξ6H3
i α = (αHi)

3, i ∈ {1, 2, 3}, there
exists e2 ∈ {0, 1, 2} such that bi ∈ Ce2 for each i ∈ {1, 2, 3} and e1 + e2 ≡ 0 (mod 3). The
theorem is proved. ¤
Remark 2.10. The second part of the proof of Theorem 2.9 gives explicit formulas for the
roots of the polynomial f(x, c), namely α2H3

1 , α2H3
2 , α2H3

3 .

3. The Cubic Character of the Tribonacci Roots

Let t(x) be irreducible over Fp and p ≡ 1 (mod 3). Let K be the splitting field of t(x)
over Fp. Then [K : Fp] = 3 and the multiplicative group K× of the field K is of order
p3 − 1 = (p − 1)(p2 + p + 1). We denote the generator of K× by g. Let α, β, γ ∈ K satisfy
t(x) = (x− α)(x− β)(x− γ). With respect to the automorphism ξ → ξp of the field K, we

can assume that β = αp, γ = αp2
. Consequently, the roots α, β, γ are distinct. Let α = gu

where u ∈ Z, 0 < u < p3 − 1. Then 1 = α1+p+p2
= gu(1+p+p2) and thus u(1 + p + p2) ≡ 0

(mod p3 − 1). This implies p− 1|u and thus there is a k ∈ Z, 1 ≤ k < p2 + p + 1 such that
u = k(p− 1). We get α = gk(p−1) and ind α = k(p− 1) in K. Let

ξα = g
k(p−1)

3 , ξβ = ξp
α = g

kp(p−1)
3 , ξγ = ξp

β = ξp2

α = g
kp2(p−1)

3 .

Then ξα, ξβ, ξγ ∈ K×, ξ3
α = α, ξ3

β = β, ξ3
γ = γ and (ξαξβξγ)

3 = 1. This implies that

ξαξβξγ ∈ {1, ε, ε2}. Further, let c(p) = −ξαξβξγ = −ξ1+p+p2

α ∈ {−1,−ε,−ε2}. It can be
shown that c(p) depends only on the prime p. By investigating the relation C(c) = 0 for
c ∈ {−1,−ε,−ε2}, we get the following lemma.

Lemma 3.1. If f(0, c) = 0 for an element c ∈ {−1,−ε,−ε2} of F, then char F = 2 or 7.

Theorem 3.2. Let t(x) be irreducible over Fp. Then f(x, c(p)) has three distinct roots in
Fp belonging to distinct cubic classes of the field Fp.

Proof. Let w1(x) = (x − ξα)(x − ξβ)(x − ξγ) = x3 + ax2 + bx + c where a = −ξα − ξβ − ξγ,
b = ξαξβ + ξαξγ + ξβξγ, c = c(p) = −ξαξβξγ. Since ap = a, bp = b, we have a, b, c ∈ Fp and
w1(x), w2(x), w3(x) ∈ Fp[x] where w2(x) = w1(εx) and w3(x) = w1(ε

2x). Furthermore, we
have w2(x) = (x−ε2ξα)(x−ε2ξβ)(x−ε2ξγ) and w3(x) = (x−εξα)(x−εξβ)(x−εξγ). Clearly,
εiξα, εiξβ, εiξγ, i ∈ {0, 1, 2} are the distinct roots of u(x) and u(x) = w1(x)w2(x)w3(x). By
Theorem 2.3 we have b 6= 0 and f(b3, c(p)) = 0. From Theorem 2.4 and Lemma 2.6 it follows
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that there exist ρ, σ ∈ Fp such that ρ 6= b3 6= σ 6= ρ, f(ρ, c(p)) = f(σ, c(p)) = 0. Suppose that

there is b′ ∈ Fp, b′3 = ρ. Let w′
1(x) = x3+a′x2+b′x+c, c = c(p), where a′ = (b′3+3c2+1)/3b′c,

w′
2(x) = w′

1(εx), w′
3(x) = w′

1(ε
2x). By Theorem 2.3 we have u(x) = w′

1(x)w′
2(x)w′

3(x). Since
b3 6= ρ = b′3, we have {w1(x), w2(x), w3(x)} ∩ {w′

1(x), w′
2(x), w′

3(x)} = ∅. Consequently,
there exists τ ∈ Fp such that u(τ) = 0. Hence τ 3 is a root of t(x) which is a contradiction.
Therefore exactly one root of f(x, c(p)) is a cubic residue of Fp. Since C(−1) = 43, C(−ε) =
18ε + 19 = (ε + 3)3 and C(−ε2) = 18ε2 + 19 = (ε2 + 3)3, we get, using Lemma 2.7, that the
roots of f(x, c(p)) belong to distinct cubic classes of Fp. ¤
Lemma 3.3. Let t(x) be irreducible over Fp, c1, c2 ∈ {−1,−ε,−ε2} and b1, b2 ∈ Fp. If
f(b3

1, c1) = f(b3
2, c2) = 0, then c1 = c2.

Proof. For i ∈ {1, 2}, let wi1(x) = x3 + aix
2 + bix + ci where ai = (b3

i + 3c2
i + 1)/3bici.

Further, let wi2(x) = wi1(εx), wi3(x) = wi1(ε
2x). Then, by Theorem 2.3, we

have u(x) = wi1(x)wi2(x)wi3(x), i ∈ {1, 2}. If c1 6= c2, then {w11(x), w12(x), w13(x)} ∩
{w21(x), w22(x), w23(x)} = ∅, and thus there is τ ∈ Fp such that u(τ) = 0. Since τ 3 is a root
of t(x) in Fp, a contradiction follows. ¤
Theorem 3.4. Let c ∈ {−1,−ε,−ε2} and let f(x, c) have three distinct roots in Fp belonging
to distinct cubic classes of Fp. Then t(x) is irreducible over Fp and c = c(p).

Proof. Let ρ be the root of f(x, c) in Fp such that ρ ∈ C0. Then there is b ∈ Fp such
that b3 = ρ. Let a = (b3 + 3c2 + 1)/3bc, w1(x) = x3 + ax2 + bx + c, w2(x) = w1(εx),
w3(x) = w1(ε

2x). By Theorem 2.3 we have u(x) = w1(x)w2(x)w3(x).
Suppose that t(x) is not irreducible over Fp. Since f(x, c) has three distinct roots in Fp,

then by Theorem 2.4 and Lemma 2.6, we have (p/11) = 1. By (2.5), there are distinct
elements τ1, τ2, τ3 ∈ Fp such that t(x) = (x − τ1)(x − τ2)(x − τ3) and thus u(x) = (x3 −
τ1)(x

3 − τ2)(x
3 − τ3). For any i ∈ {1, 2, 3}, there is k = k(i) ∈ {1, 2, 3} such that 1 ≤

deg(gcd(x3 − τi, wk(x))) ≤ 2. Thus there is ξi ∈ Fp which is the root of x3 − τi. Since εξ1,
ε2ξi are also the roots of x3− τi, we have x3− τi = (x− ξi)(x− εξi)(x− ε2ξi) for i ∈ {1, 2, 3}.
This implies that u(x) completely splits over Fp into the product of the linear terms x−εiξj,
i ∈ {0, 1, 2}, j ∈ {1, 2, 3}. We can assume

w1(x) = (x− ξ1)(x− ξ2)(x− ξ3),

w2(x) = w1(εx) = (x− ε2ξ1)(x− ε2ξ2)(x− ε2ξ3),

w3(x) = w1(ε
2x) = (x− εξ1)(x− εξ2)(x− εξ3).

It follows that b = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 and c = −ξ1ξ2ξ3. Let

w1(x) = (x− εξ1)(x− ε2ξ2)(x− ξ3),

w2(x) = w1(εx) = (x− ξ1)(x− εξ2)(x− ε2ξ3),

w3(x) = w1(ε
2x) = (x− ε2ξ1)(x− ξ2)(x− εξ3).

Letting a = −εξ1− ε2ξ2− ξ3 and b = ξ1ξ2 + εξ1ξ3 + ε2ξ2ξ3, we get w1(x) = x3 + ax2 + bx + c.

Since u(x) = w1(x)w2(x)w3(x), it follows from Theorem 2.3 that f(b
3
, c) = 0.

We prove that b 6∈ {b, εb, ε2b}. Suppose that b = b. Then ξ1ξ2 +ξ1ξ3 +ξ2ξ3 = ξ1ξ2 +εξ1ξ3 +
ε2ξ2ξ3 and thus ξ2ξ3(ε

2 − 1) + ξ1ξ3(ε− 1) = 0. Hence ξ2(ε + 1) = −ξ1. Since (ε + 1)3 = −1
we have τ2 = ξ3

2 = ξ3
1 = τ1, which is a contradiction. Similarly we can prove that b 6= εb and

b 6= ε2b. Hence b 6∈ {b, εb, ε2b}, and thus b3 6= b
3
. Consequently, the roots b3, b

3
of f(x, c)
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belong to the same cubic class and a contradiction follows. Thus t(x) is irreducible over Fp.
From Theorem 3.2 we get that f(x, c(p)) has a root b3

1 where b1 ∈ Fp and Lemma 3.3 implies
c = c(p). ¤

Theorem 3.5. Let t(x) have exactly one root τ in the field Fp and p 6= 7. Then, for any
c ∈ {−1,−ε,−ε2}, there exists the unique ρ = ρ(c) ∈ Fp such that f(ρ, c) = 0. Furthermore,
ρτ is a cubic residue of the field Fp.

Proof. According to Corollary 2.5 we have (p/11) = −1. Let F = Fp2 . Then t(x) has three
distinct roots τ, α, β ∈ F and t(x) = (x − τ)(x − α)(x − β). Let c ∈ {−1,−ε,−ε2}. Using
Theorem 2.9, we get that τ, α, β belong to the same cubic class Ce1 of the field F and f(x, c)
has three distinct roots in F which belong to the same cubic class Ce2 , e2 ∈ {0, 1, 2} of F
and e1 + e2 ≡ 0 (mod 3).

Using Theorem 2.4 and Lemma 2.6, we get that there exists exactly one element ρ =
ρ(c) ∈ Fp such that f(ρ, c) = 0. Since τ ∈ Ce1 and ρ ∈ Ce2 , there exists ω ∈ F = Fp2 such
that ρτ = ω3. The element ρτ belongs to Fp and [F : Fp] = 2, thus ω ∈ Fp and the result
follows. ¤

The case p = 7 will be investigated separately. The polynomial t(x) has only one root τ = 3
in the field F7. The set {−1,−ε,−ε2} = {3, 5, 6} and the polynomials f(x, c), c = 3, 5, 6
have the following roots in F7:

c ρ = ρ(c) ρ(p−1)/3 = ρ2 (ρτ)(p−1)/3 = (ρτ)2

3 0 0 0

5 5 4 1

6 2 4 1

where ρ = ρ(c) is the only root of f(x, c) in F7. Therefore, we can state the following
proposition.

Proposition 3.6. Let p = 7. Then the Tribonacci polynomial t(x) has a unique root τ = 3
in F7 and, for c ∈ {−1,−ε,−ε2} − {3}, there exists a unique ρ = ρ(c) ∈ F7 with f(ρ, c) = 0
and ρτ is a cubic residue in F7.

Combining Theorem 3.5 with Proposition 3.6, we obtain the following theorem.

Theorem 3.7. Let t(x) have a unique root τ in the field Fp. Then 2τ belongs to the cubic
class C0 of Fp and therefore

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).

Using Theorem 2.9 we get the following theorem.

Theorem 3.8. Let t(x) have three distinct roots α, β, γ ∈ Fp. Then there exists e1 ∈ {0, 1, 2}
such that {α, β, γ} ⊆ Ce1 and any polynomial f(x, c), c ∈ {−1,−ε,−ε2} has three distinct
roots in Fp which belong to the same cubic class Ce2 of Fp where e2 ∈ {0, 1, 2} and e1+e2 ≡ 0
(mod 3). In particular, for any τ ∈ {α, β, γ}, the element 2τ belongs to the cubic class C0

of Fp and thus

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).
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4. Conclusion

In conclusion, we prove a theorem on the relation between the roots of t(x) and the number
2 in any extension of the field Fp.

Theorem 4.1. Let G be an arbitrary extension of the field Fp and χ ∈ G be a root of t(x)
in G. Then there exists ω ∈ G such that 2χ = ω3.

Proof. We will discuss three cases. (i) Let t(x) be irreducible over Fp. Then t(x) has three
distinct roots α, β, γ in the splitting field K over Fp. Thus K ⊆ G and χ ∈ {α, β, γ}. Using
Theorem 2.9, we see that 2χ is a cubic residue of the field K and the result follows.

(ii) Let t(x) have the unique root τ in the field Fp. By Theorem 3.7, the element 2τ is
a cubic residue of the field Fp ⊆ G. Thus, for χ = τ , the theorem is valid. If χ 6= τ , then
χ ∈ Fp2 . Since Fp2 ⊆ G, we obtain the result from Theorem 2.9 provided that p 6= 7. For
p = 7, we get the assertion from Lemma 2.8.

(iii) Let t(x) have three distinct roots in Fp. According to Theorem 3.8, the element 2χ is
a cubic residue of the field Fp and hence 2χ = ω3 for an element ω ∈ Fp ⊆ G. The proof is
complete. ¤
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