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Abstract. We derive evaluations of the classical Dedekind sum s(h, k) for certain classes
of generalized Fibonacci and Lucas numbers that had previously not been considered. As
particular cases we obtain explicit formulas for s(pn − 1, pn+1

− 1) for integers p ≥ 2 and
n ≥ 1, and for s(pn + 1, pn+1 + 1), with p ≥ 2 even.

1. Introduction

The classical Dedekind sum is defined by

s(d, c) =

c
∑

j=1

((

j

c

))((

dj

c

))

,

with

((x)) =

{

0, if x ∈ Z,

x− [x]− 1

2
, otherwise.

Because of important applications, mainly in number theory, the Dedekind sum has been stud-
ied extensively by many authors in a variety of contexts. See Rademacher and Grosswald [4]
for a bibliography. The most important result about Dedekind sums, first proved by Dedekind
himself [2], is the reciprocity law. There are many different proofs in the literature, including
four in [4].

Theorem 1 (Reciprocity Law). If (h, k) = 1 and h, k > 0, then

s(k, h) + s(h, k) =
h2 + k2 + 1− 3hk

12hk
. (1.1)

From the definition and with the help of this reciprocity law one can easily obtain special
values of the Dedekind sum, among them

s(1, k) =
(k − 1)(k − 2)

12k
, (1.2)

and, if k is odd,

s(2, k) =
(k − 1)(k − 5)

24k
(1.3)
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(see, e.g., [1, p. 62]), with numerous extensions that can be found in [1, p. 73] and more
recently in [6]. A related property is the fact that the only integer value taken by s(h, k) is
zero, and

s(h, k) = 0 if and only if h2 + 1 ≡ 0 (mod k).

The second author [3] used this and the reciprocity law (1.1) to show that s(h, k) = s(k, h) if
and only if h = F2n+1 and k = F2n+3 for positive integers n, where Fn is the nth Fibonacci
number.

This indicates that Fibonacci numbers play a special role in the evaluation of the Dedekind
sum. Indeed, special values of the Dedekind sum can be found in [1, p. 72] and [7], with
extensions to Lucas and generalized Lucas numbers in [5], and further extensions in [8].

It is the purpose of this paper to deal with several classes of generalized Fibonacci and
Lucas sequences not covered by the results in [8]. In Section 2 we introduce the sequences to
be considered, and in Section 3 we prove our evaluations. We conclude this paper with some
easy consequences in Section 4.

2. The Sequences

The sequences under consideration here are as follows. For p, q ∈ Z we define the generalized
Fibonacci and Lucas sequences, respectively, by

u0 = 0, u1 = 1, un+1 = pun − qun−1

and
v0 = 2, v1 = p, vn+1 = pvn − qvn−1.

If we set ∆ = p2 − 4q, α = (p +
√
∆)/2, and β = (p −

√
∆)/2, these sequences have the

standard Binet forms, for n ≥ 0,

un =
αn − βn

α− β
and vn = αn + βn. (2.1)

The classical Fibonacci and Lucas sequences are obtained when p = 1 and q = −1. In [5] and
[8], the class of sequences investigated involve |q| = 1. In this paper we consider certain cases
involving arbitrary values of q; in particular we address the sequences

un+1 = pun + (p+ 1)un−1, vn+1 = pvn + (p + 1)vn−1 (2.2)

and

un+1 = (p + 1)un − pun−1, vn+1 = (p+ 1)vn − pvn−1, (2.3)

with initial values as above. Because the characteristic polynomials of these sequences are
reducible, we get the following first-order recurrences.

Lemma 1. For the sequences given by (2.2) we have, respectively,

un+1 = (p+ 1)un + (−1)n

and

vn+1 = (p+ 1)vn + (−1)n+1(p+ 2).

Lemma 2. For the sequences given by (2.3) we have, respectively,

un+1 = pun + 1

and

vn+1 = pvn − (p− 1).
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The proofs of these lemmas are straightforward and follow directly from the Binet forms in
(2.1).

3. The Evaluations

To establish our evaluations we require a few well-known elementary properties of the
Dedekind sum, which we summarize in the following lemmas.

Lemma 3. For integers h, k, h1, h2, and q we have the following.

(a) s(−h, k) = −s(h, k) and s(h,−k) = s(h, k).
(b) If h1 ≡ h2 (mod k), then s(h1, k) = s(h2, k).
(c) s(qh, qk) = s(h, k).

The next lemma can be found in [1, p. 73] as Exercise 13.

Lemma 4. If h, k, r ≥ 1, (h, k) = 1, and k ≡ r (mod h), then

s(h, k) =
h2 + k2 + 1− (12s(r, h) + 3) hk

12hk
.

We consider evaluations of the Dedekind sums at consecutive terms of the sequences under
consideration. The proofs are similar to each other; hence we omit many of the calculations
in later proofs.

Theorem 2. Let the sequence {un} be defined by the first part of (2.2), with p ∈ N. Then we

have

s(u2n+1, u2n+2) =
(p+ 1)2u2n

(

(p + 1)u2n + p− 3
)

+ p2 − 3p + 2

12u2n+2

(3.1)

and

s(u2n, u2n+1) =
(p+ 1)2u2n−1

(

p+ 3− (p+ 1)u2n−1

)

− p2 − 3p− 2

12u2n+1

. (3.2)

Proof. We prove the evaluation (3.1); the proof of (3.2) is similar. By the Reciprocity Law,
we have

s(u2n+1, u2n+2) =
u22n+1 + u22n+2 + 1− 3u2n+1u2n+2

12u2n+1u2n+2

− s(u2n+2, u2n+1).

Now, by the definition of un, Lemma 3(b), Lemma 1, Lemma 3(a), and Lemma 3(c), we have
that

s(u2n+2, u2n+1) = s(pu2n+1 + (p + 1)u2n, u2n+1)

= s ((p + 1)u2n, u2n+1)

= s(u2n+1 − 1, u2n+1)

= s(−1, u2n+1)

= − s(1, u2n+1)

= − (u2n+1 − 1)(u2n+1 − 2)

12u2n+1

.
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Then we get

s(u2n+1, u2n+2) =
u22n+1 + u22n+2 + 1− 3u2n+1u2n+2

12u2n+1u2n+2

+
(u2n+1 − 1)(u2n+1 − 2)

12u2n+1

=
u22n+1 + u22n+2 + 1− 6u2n+1u2n+2 + u22n+1u2n+2 + 2u2n+2

12u2n+1u2n+2

=
(u2n+2 − pu2n+1)

2 + (1− p2)u22n+1 + 1

12u2n+1u2n+2

+
(2p − 6)u2n+1u2n+2 + u22n+1u2n+2 + 2u2n+2

12u2n+1u2n+2

,

where, prior to the last step, we subtract and add 2pu2n+2u2n+1 − p2u22n+1 in the numerator.
After some simplification, including several applications of Lemma 1, we arrive at the desired
result. �

Theorem 3. Let the sequence {vn} be defined by the second part of (2.2), where p ∈ N and p
is odd. Then we have

s(v2n+1, v2n+2) = −
(p+ 1)

(

v2n+1

(

v2n+1 −
(p+ 1)(p + 7)

2

)

− p2 + 9p + 12

2

)

12(p + 2)v2n+2

and

s(v2n, v2n+1) =

(p+ 1)v2n

(

v2n +
p2 − 4p− 17

2

)

− (p+ 3)(p2 − 5p− 12)

2

12(p + 2)v2n+1

.

Proof. The proofs of these results follow the same steps as the proof of Theorem 2, but in
this case we note that the initial calculation involves the evaluation of s(p+2, v2n+1). This is
accomplished with Lemma 4 and the evaluation of s(2, p+ 2) from the identity (1.3). �

The proofs of Theorems 4 and 5 are also analogous to that of Theorem 2 and are omitted.

Theorem 4. Let {un} be defined by the first part of (2.3), where p ∈ N. Then we have

s(un, un+1) = −pun(un − p)

12un+1

.

Theorem 5. Let {vn} be defined by the second part of (2.3), where p ∈ N and p is even. Then

we have

s(vn, vn+1) =
p
(

vn (p(p− 6) + 2vn)− (p2 − 7p + 4)
)

24(p − 1)vn+1

.

4. Some Consequences

In this final brief section we show how Theorems 4 and 5, together with the Binet formula,
easily provide some special evaluations involving powers of integers.

Corollary 1. For p ≥ 2 and n ∈ N, we have

s
(

pn − 1, pn+1 − 1
)

= −p (pn − 1)
(

pn − p2 + p− 1
)

12 (pn+1 − 1) (p− 1)
.
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Proof. The Binet form (2.1) for the sequence un is un = (pn − 1)/(p− 1). In light of this and
Lemma 3(c), we have that

s(un, un+1) = s

(

pn − 1

p− 1
,
pn+1 − 1

p− 1

)

= s
(

pn − 1, pn+1 − 1
)

.

We use the evaluation from Theorem 4 and the Binet formula again to get the desired result.
�

Corollary 2. For even p ≥ 2 and n ∈ N, we have

s
(

pn + 1, pn+1 + 1
)

=
p
(

pn
(

2pn + p2 − 6p + 4
)

+ p− 2
)

24(p − 1) (pn+1 + 1)
.

Proof. This is a direct application of the Binet form vn = pn + 1 and Theorem 5. �

References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edition, Springer-Verlag,
New York, Berlin, Heidelberg, 1990.
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