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Abstract. A sequence of polynomials is defined by the recurrence Pn+1 = (Pn + c− a)2− c,
with P0 = x − c. Conditions are found for interlacing zeros among these polynomials, and
an association between zeros and Gray codes is described. If c = a = 2, the polynomials are
closely related to Chebyshev polynomials of the first kind.

1. Introduction

This paper presents properties of polynomials Pn defined recursively by Pn+1 = (Pn +
c − a)2 − c, especially in the case that c = a. Following methods in [1], we prove that for
many of these polynomials, the zeros of Pn+1 interlace the set of zeros of all the polynomials
P0, P1, . . . , Pn, in a manner related to Gray codes (in Sections 3 and 7). It is remarkable
that the methods in [1] apply as directly as they do to the polynomials Pn, even though the
polynomials in [1] are quite different from those in the present paper. What the two families
have in common is the manner in which the zeros of each new polynomial arise from the
preceding polynomial by the application of a “lower function” and an “upper function”. In
[1], these two functions are of the form

(cx±
√

c2x2 + 4)/2,

whereas in the present work, the two are of the form

a±
√
x.

Rahman and Schmeisser [2, pp. 196–201], discuss the subject of interlacing zeros. If a = 2,
the polynomials Pn are shown in Section 5 to be related to Chebyshev polynomials of the first
kind, of which many properties are developed in Rivlin [3] and Sloane [4].

2. The Recurrence Pn+1 = (Pn + c− a)2 − c

Suppose that a and c are nonzero complex numbers, and define polynomials Pn = Pn(x) by

Pn+1 = (Pn + c− a)2 − c, (1)

where P0 = x− c. For n ≥ 1, the set Sn of zeros of Pn is given recursively using the functions

`(x) = a−
√
x and u(x) = a+

√
x, (2)

starting with the zero r01 = c of P0, so that S0 = {r01}. Let r11 = `(r01) and r12 = u(r01).
Then

(r1j − a)2 = c

for j = 1, 2, so that S1 = {r11, r12}. For any r in S1, let ρ1 = `(r) and ρ2 = u(r). Then

((ρj − a)2 − a)2 = c,
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so that for j = 1, 2, the number ρj is a zero of the polynomial

P2(x) = ((x− a)2 − a)2 − c = P1((x− a)2),

and S2 = {r21, r22, r23, r24}, where these are the numbers ρj . Inductively, for n ≥ 1, the zeros
of Pn are the 2n numbers ρ obtained by applying ` and u to each of the 2n−1 zeros of Pn−1,
and for all x,

Pn(x) = Pn−1((x− a)2). (3)

Regarding the cardinality of Sn as 2n, this count allows for repeated zeros. (For example, 1
is a repeated zero of P2 when a = c = 1.) In Section 3, we shall present conditions for Sn to
contain no duplicates and in Section 4, conditions for S0∪S1∪. . .∪Sn to contain no duplicates.

Starting with (1) written as Pn = (Pn−1 + c− a)2 − c, we have

P ′
n = 2(Pn−1 + c− a)P ′

n−1,

which leads recursively to

P ′
n = 2n(Pn−1 + c− a)(Pn−2 + c− a) · · · (P1 + c− a)(P0 + c− a). (4)

On the other hand, by (3),

P ′
n(x) = 2(x− a)P ′

n−1((x− a)2). (5)

Since P ′
0 is invariant of c, the same is true, by (5), for all P ′

n, in spite of the appearances of c
in (4). To say more about this invariance, let A0 = x− a, and for n ≥ 1, define An by taking
c = a in (1), so that An+1 = A2

n − a. Then, we shall quickly prove,

An − Pn = c− a. (6)

First note that (6) holds for n = 0, and assume for arbitrary k ≥ 0 that Ak−Pk = c−a. Then

Ak+1 − Pk+1 = A2
k − a− [(Pk + c− a)2 − c]

= (Ak − Pk − c+ a)(Ak + Pk + c− a) + c− a

= c− a.

To summarize, for given a and any two choices of c, for each n the two polynomials Pn differ
by a constant.

Suppose that c = a, that n ≥ 0, and that r is any zero of Pn. Then

Pn+1(r) = P 2
n(r)− a = −a;

Pn+2(r) = P 2
n+1(r)− a = a2 − a = P0(a

2);

and inductively,

Pn+k(r) = Pk−2(a
2).

That is, we have a very short formula for Pm(r) if m ≥ n. On the other hand, suppose that
0 ≤ m < n, and let rk denote the greatest zero of Pk. Then

Pm(rn) = rn−m − a.

In general, if rnj is coded as a word a1a2 · · · an over the alphabet {`, u}, as in (9)–(11), and if
r′1, r

′
2, . . . , r

′
n are the zeros coded by the words a1, a1a2, . . . , a1a2 · · · an, respectively, then

Pm(rnj) = r′n−m − a.
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3. The Conditions a2 > c > 0 and a ≥ 2

In this section, we are interested in conditions under which the zeros of Pn are real and
distinct. These conditions lead to the next section on interlaced zeros.

Theorem 1. Suppose that n ≥ 0. Then the conditions

a2 > c > 0 and a ≥ 2

hold if and only if the zeros of Pn are distinct positive real numbers.

Proof. Given the hypothesis, let ` and u be as in (2), and define

u0 = c, u1 = u(u0), . . . , un = u(un−1).

Clearly un is the greatest zero of Pn. It is easy to prove that un < 2a for n ≥ 1. As a
bounded strictly increasing sequence, (un) has a limit, L. Taking the limit of both sides of

un+1 = a+
√
un gives L = a+

√
L, so that

L = (2a+ 1 +
√
4a+ 1)/2. (7)

Next, consider, for any n ≥ 1, the number ` (un) = a−√
un. Using the hypothesis that a ≥ 2,

it is easy to prove that `(un) > 0, that `(un) is the least zero of Pn, that (`(un)) is strictly

decreasing, and that its limit is a−
√
L. (Note that a =

√
L for a = 2, that a >

√
L for a > 2,

and that (7) holds for all a > 0.)
To see that the zeros of Pn are distinct, note that this is true for n = 0 and assume it true

for arbitrary k ≥ 0. Each zero of Pk+1 is `(r) or u(r) for some zero r of Pk. Clearly if r1 and r2
are zeros of Pk then `(r1) < u(r2). Moreover, if r1 < r2, then `(r1) > `(r2) and u(r1) < u(r2).
Therefore the zeros of Pk+1 are distinct, and by induction this is true for every Pn.

We prove the converse in cases: if c = 0, then the zeros of P1 are not distinct, and if c < 0,
the zeros of P1 are nonreal. If c > 0 and a2 ≤ c, then by (2), the zero `(c) of P1 is not positive.
Finally, if a2 > c > 0 but a < 2, then

inf
∞∪
n=1

Sn = a−
√
L,

which is easily proved to be negative for 0 ≤ a < 2; consequently Pn has a negative zero for
some n. �

The proof of Theorem 1 shows that for n ≥ 1, the numbers in Sn range in strictly increasing
order between a−

√
L and a+

√
L. For n ≥ 0, let Zn denote the list of numbers in Sn ordered

from least to greatest. For n ≥ 1, we may speak of the lower and upper halves of Zn; that is,
numbers `(r) < a and numbers u (r) > a, respectively, where r ranges through Zn−1. In fact,
much more can be said. Let ` = `(c), u = u(c), `u = `(u), and so on, so that each number in
Zn is represented as an n-letter word on the alphabet {`, u}; viz.,

Z0 = (c) = (r01) (8)

Z1 = (`, u) = (r11, r12) (9)

Z2 = (`u, ``, u`, uu) = (r21, r22, r23, r24) (10)

Z3 = (`uu, `u`, ```, ``u, u`u, u``, uu`, uuu), etc. (11)

To get from Zn to Zn+1, apply the function `(x) = a − √
x to Zn in reverse order, and then

apply the function u(x) = a +
√
x to Zn in forward order. This makes Zn an n-bit Gray

code, a pattern that will be considered again in Section 7. It will be convenient to apply the
operations ∪ and ∩ in the obvious manner to the ordered lists Zn.
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Three simple identities characterize the relationship between the lower and upper halves
of Zn for n ≥ 1. Each number r in the upper half has the form u(ρ) for some ρ in Zn−1.
Matching r is the number r′ = `(ρ) in the lower half. The three identities follow immediately
from (2):

r + r′ = 2a (12)

r − r′ = 2
√
ρ (13)

rr′ = a2 − ρ. (14)

Define

l0 = c, l1 = l(l0), ..., ln = l(ln−1).

In the proof of Theorem 1, we have already seen that the least zero of Zn is l(un−1). It is of
interest to compare the limits

l = lim
n→∞

ln = (2a+ 1−
√
4a+ 1)/2;

L = lim
n→∞

un = (2a+ 1 +
√
4a+ 1)/2.

If a = c = m(m+ 1) for some positive integer m, then l = m2 and L = (m+ 1)2. Thus, with
reference to the proof of Theorem 1,

inf
∞∪
n=0

Zn = m2 − 1, sup
∞∪
n=0

Zn = (m+ 1)2,

the point being that these endpoints of the range interval for all the zeros of all the polynomials
Pn are integers, and the length of the interval is 2m+ 2.

4. Interlaced Zeros

The main objective in this section is to prove that under the hypothesis of Theorem 1, for
given n the set of all the zeros of the polynomials P0, P1, . . . , Pn interlace the zeros of Pn+1.
We start with a definition. Suppose S and T are sets of numbers such that |S| = |T |+ 1 ≥ 2.
Write the numbers in S in increasing order as s1, s2, . . . , sm, and those in T in increasing order
as t1, t2, . . . , tm−1. Then S interlaces T if

s1 < t1 < s2 < t2 < · · · < tm−1 < sm.

Throughout this section, the conditions a2 > c > 0 and a ≥ 2 are assumed. By Theorem
1, for any n ≥ 0, the 2n numbers (or words) in Zn are distinct. We now wish to extend this
result by finding a condition under which the 2n+1−1 numbers (or words) in Z0∪Z1∪· · ·∪Zn

are distinct. Suppose, to the contrary, that there is a least i such that Zi ∩ Zj 6= ∅ for some
j > i. Then there is a number w1 = w1(`, u) in Zi that is identical to a number w2 = w2(`, u)
in Zj. As words, w1 and w2 must have the same first letter, since every number (or word)
with first letter ` is less than every number with first letter u. Then because ` and u are both
strictly monotone, we must have i = 0, which is to say that w1 = c and w2 is a zero of Pj .
Since w2 = c, we have Pj(c) = 0. Accordingly, the desired condition for Z0 ∪ Z1 ∪ · · · ∪ Zn to
be free of duplicates is that

Pk(c) 6= 0 for k = 1, 2, . . . , n. (15)

As an example, (15) fails for k = 1 in case (c− a)2 = c, as when c is the number L in (7); e.g.,
if a has the form m(m+1), then (15) fails for c = (m+1)2 and also for c = m2. On the other
hand, if

√
c is irrational, then it is inductively clear that the conditions (15) hold.

Next we consider gapsizes in Zn.
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Lemma 1. Suppose that n ≥ 1 and that r1 and r2 are zeros of Pn satisfying a < r1 < r2.
Then u(r2)− u(r1) < r2 − r1.

Proof. Suppose a < r1 < r2; i.e., r1 and r2 are in the upper half of Zn. Then
√
r2 +

√
r1 > 1,

so that
u(r2)− u(r1) =

√
r2 −

√
r1 < r2 − r1.

�

Applying Lemma 1 inductively to the lists Zn, we find on writing m = 2n that

rn,m − rn,m−1 < rn,m−1 − rn,m−2 < · · · < rn,m/2+1 − rn,m/2.

This upper chain and the identity rn,k + rm,m−k+1 = 2a for k = 1, 2, . . . ,m imply a lower
chain:

rn,2 − rn,1 < rn,3 − rn,2 < · · · < rn,m/2+1 − rn,m/2.

The two chains of inequalities show that the longest gap in Zn has length

rn,m/2+1 − rn,m/2 = u`un−2 − `2un−2. (16)

Note that

u`(L) = u(a−
√
L) = a+

√

a−
√
L,

`2(L) = `(a−
√
L) = a−

√

a−
√
L,

where L is given by (7). Since L = lim
n→∞

un−2, we find from (16) that the limiting length of

the longest gap is

2

√

a−
√
L. (17)

Theorem 2. Suppose that

a2 > c > 0 and a ≥ 2

and that Pn(c) 6= 0 for all n ≥ 1. Then
n∪

k=1
Zk interlaces Zn+1.

Proof. First, by Theorem 1, Zn consists of positive real numbers for every n, and by the
discussion following (15), the numbers in the union of all Zn are distinct. Clearly Z0 interlaces

Z1. Assume for arbitrary n ≥ 1 that the list Z :=
n−1

∪
k=1

Zk interlaces Zn. Let m = 2n. By

Theorem 1,
|Z| = m− 1, |Zn| = m, |Zn+1| = 2m. (18)

Suppose that zi and zi+1 are in Zn+1. As a first of three cases, assume that c ≤ zi < zi+1.
Then zi = u(w1) and zi+1 = uw2 for some w1 and w2 in Zn. By the induction hypothesis,
there exists a number w in Z such that w1 < w < w2. Since u is strictly increasing, we have

u(w1) < u(w) < u(w2), where uw is in
n
∪

k=1
Zk.

For case 2, suppose that zi < c < zi+1; then clearly a number in Z separates zi and zi+1.
For case 3, assume that zi < zi+1 ≤ c. Then zi = `(w1) and zi+1 = `(w2), where w1 and w2

are numbers in Zn satisfying w2 < w1. By the induction hypothesis, there exists w in Z such
that w2 < w < w1, and since ` is strictly decreasing, we have `(w1) < u(w) < `(w2). Thus,
in all three cases, there is at least one number z in Z between each pair of numbers zi and
zi+1 in Zn+1. The cardinalities in (18) thus imply that there is exactly one such z. Moreover,

`un < z < un+1 for all z in Z. Therefore,
n∪

k=1
Zk interlaces Zn+1. �

AUGUST 2010 213



THE FIBONACCI QUARTERLY

A second proof of Theorem 2 follows. Putting c = a in (4) and adjusting subscripts give

P ′
n+1 = 2nPnPn−1 · · ·P1P0, a polynomial whose 2n+1−1 zeros comprise

n
∪

k=1
Zk, while the zeros

of Pn+1 comprise Zn+1. Between each neighboring pair of zeros of Pn+1 occurs a local extreme
of Pn+1, so that there must be 2n+1 − 1 such extremes. Since P ′

n+1 has exactly 2n+1 − 1 zeros
and these are the x-coordinates of the local extremes of Pn+1, they are interlaced by the zeros
of Pn. If c 6= a (but still a2 > c > 0), then by (6), P ′

n+1 = A′
n+1, so that in this case, too, the

interlacing holds.

5. The Case a = c = 2

Throughout this section, assume that a = c = 2. The first four polynomials Pn are then

P0 = x− 2

P1 = x2 − 4x+ 2

P2 = x4 − 8x3 + 20x2 − 16x+ 2

P3 = x8 − 16x7 + 104x6 − 352x5 + 660x4 − 672x3 + 336x − 64x+ 2.

Further coefficients are given [4] as A158982. We shall see that the sequence Pn is closely
related to a subsequence of the sequence Tn of Chebyshev polynomials of the first kind. These
classical polynomials are defined for n = 0, 1, 2, . . . by

Tn(x) = cos(n arccos x). (19)

The first five are

T1 = 1

T2 = x

T3 = 2x2 − 1

T4 = 4x3 − 3x

T5 = 8x4 − 8x2 + 1.

The definition (19) implies that the sequence Tn is given recursively by

Tn(x) = 2xTn−1(x)− Tn−2(x),

and, that among dozens [3] of well-known of identities,

Tn(x) =
1

2

[

(x+
√

x2 − 1)n + (x−
√

x2 − 1)n
]

;

Tm ◦ Tn = Tmn;

Tm · Tn =
1

2

(

Tm+n + T|m−n|

)

;

(1− x2)T ′′
n − xT ′

n + n2Tn = 0.

The polynomials Pn are related to Chebyshev polynomials by the identity

Pn(x) = 2T2n+1(
√
x/2),

so that properties of the Chebyshev polynomials imply properties of the polynomials Pn. The
connection between the two families of polynomials is indicated in [4] at A084534, which is
described as the “unsigned version of the coefficient table for scaled Chebyshev T (2 ∗ n, x)
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polynomials.” For example, among the rows of that table are (1, 4, 2) and (1, 8, 20, 16, 2),
compared with coefficients (1,−4, 2) and (1,−8, 20,−16, 2) for P1 and P2.

Next, we determine the zeros of Pn from those of Tn.

Tn(x) = 2n−1

n
∏

k=1

(x− cos
(2k − 1)π

2n
);

Pn(x) = 2T2n+1(

√
x

2
)

= 2n
2n+1
∏

k=1

(

√
x

2
− cos

(2k − 1)π

2n+2
);

Pn(x
2) = 2n

2n+1
∏

k=1

1

2
(x− 2 cos

(2k − 1)π

2n+2
).

Now applying (3),

Pn+1(x+ 2) =
1

2

2n+1
∏

k=1

(x− 2 cos
(2k − 1)π

2n+2
).

Let t = x+ 2:

Pn+1(t) =
1

2

2n+1

∏

k=1

(t− 2− 2 cos
(2k − 1)π

2n+2
),

so that the zeros of Pn are

2 + 2 cos
(2k − 1)π

2n+1
,

for k = 1, 2, . . . , 2n. The least of these zeros is

2− 2 cos
π

2n+1
. (20)

With a = 2 in (7), we already know that the limit of the least zero `(un) is 0; a stronger result,

obtained from (20), is that
∞
∑

n=0

`(un) < ∞. Specifically,

2
∞
∑

n=0

(

1− cos
π

2n+1

)

= 2.78929960425033 . . . .

We return now to the supremum (17) for the gapsize between adjacent numbers in
∞∪
n=1

Zn.

It is easy to check that if a > 0 and 2
√

a−
√
L = 0, then a = 2. Accordingly,

∞
∪

n=1
Zn is dense

in the interval [a−
√
L, a+

√
L] if and only if a = 2.
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6. The Case a = c = 1

Throughout this section, assume that a = c = 1 so that the first four polynomials Pn are

P0 = x− 1

P1 = x2 − 2x

P2 = x4 − 4x3 + 4x2 − 1

P3 = x8 − 8x7 + 24x6 − 32x5 + 14x4 + 8x3 − 8x2,

as in [4] at A158984. By (1),

Pn = (Pn−1 − 1)(Pn−1 + 1)

= (Pn−1 − 1)P 2
n−2. (21)

Obviously, Pn is highly composite for large n; its factor

Qn := Pn−1 − 1

is of some interest. The first three of these polynomials are

Q1 = x− 2

Q2 = x2 − 2x− 1

Q3 = x4 − 4x3 + 4x2 − 2,

as in [4] at A158986. Iterating (21) gives

Pn =







(x− 1)2
k

QnQ
2
n−2Q

4
n−4 · · ·Q2k−1

2 if n = 2k is even

(x2 − 2x)2
k

QnQ
2
n−2Q

4
n−4 · · ·Q2k−1

3 if n = 2k + 1 is odd.

A recurrence for Qn is easily found:

Qn = P 2
n − 2

= (Qn−1 + 1)2 − 2

= (Qn−1 + 1−
√
2)(Qn−1 + 1 +

√
2).

The zeros of Q2 are `(2) = 1−
√
2 < 0 and u(2) = 1 +

√
2 > 0, so that the 4 zeros of Q3 are

given by

`(u(2)) < 0; `(`(2)), nonreal; u(`(2)), nonreal; u(u(2)) > 0.

For arbitrary k ≥ 3, assume as an induction hypothesis that, in regard to the 2k zeros of
Qk, one is negative, one is positive, and all the others are nonreal. Then the zeros of Qk+1,
obtained by applying the functions `(x) and u(x) in (2) to the zeros of Qk, have the same
distribution: one negative, one positive, and all others nonreal. Therefore, this distribution
holds for every n ≥ 3.

The increasing sequence of positive zeros, (1 +
√
2, 1 +

√

1 +
√
2, . . .) is easily seen to have

limit 1+τ , where τ = (1+
√
5)/2, the golden ratio. The decreasing sequence of negative zeros,

(1−
√
2, 1−

√

1 +
√
2, . . .), has limit 1− τ .
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7. Concluding Remarks

Consider the zeros of P3 in the case that c = a ≥ 2:

r31 = l(r24) = a−
√

a+
√

a+
√
a −++

r32 = l(r23) = a−
√

a+
√

a−√
a −+−

r33 = l(r22) = a−
√

a−
√

a−√
a −−−

r34 = l(r21) = a−
√

a−
√

a+
√
a −−+

r35 = u(r21) = a+
√

a−
√

a+
√
a +−+

r36 = u(r22) = a+
√

a−
√

a−√
a +−−

r37 = u(r23) = a+

√

a+
√

a−√
a ++−

r38 = u(r24) = a+

√

a+
√

a+
√
a +++.

As an observation presaged in Section 3, the eight sign-triples, beginning with − + + and
ending with + + +, constitute a Gray code. That is, as we pass from each triple to the next,
there is exactly one change in sign, and this is also true as we pass from the final +++ to the
original − + +. Remarkably, for any a ≥ 2, we have, as a match for the Gray code ordering,
the monotonic ordering given by

r31 < r32 < r33 < r34 < r35 < r36 < r37 < r38,

and similarly for all n ≥ 0. If we regard a as a variable, then the expressions rij represent
functions of a that have the interlacing properties proved in Section 4 for numerical values.
These observations about Gray codes and interlacing functions apply also to the polynomials
discussed in [1].

With the ordered lists (8)–(11) in mind, it is natural to consider the position of each number
rij within the successive ordered-union lists

Z0, Z0 ∪ Z1, Z0 ∪ Z1 ∪ Z2, Z0 ∪ Z1 ∪ Z2 ∪ Z3, . . . .

For Z0 we write 1, as r01 is the only rij . For Z0 ∪ Z1 we write 2 1 3 for the positions of
r11, r01, r12, and so on. The first four rows of the resulting array, A131987, named “Represen-
tation of a dense para-sequence,” are

1
2 1 3

4 2 5 1 6 3 7
8 4 9 2 10 5 11 1 12 6 13 3 14 7 15

The interlacing property is especially easily seen here; e.g., the odd-numbered terms 8, 9, 10, . . . , 15
in row 4 interlace the terms 4, 2, 5, 1, 6, 3, 7 comprising row 3.

Next, we note that if c = a is a nonzero integer, then (1) clearly implies Pn(x) ≡ xn mod a
for n = 0, 1, 2, . . ., since every coefficient in Pn, except the coefficient of xn, is an integer
multiple of a.

Finally, for various choices of a, c, and k, the integer sequence Pn(k) is of interest. For
example, when c = a = −1, the sequence Pn(1) is essentially A003095 in [4], associated with
the number of binary trees of height less than n. In connection with a = −2, there are (with
reference to the encyclopedia [4]) the Lucas-Lehmer sequence A003010 and related sequences
A001566, A003487, A003423, A072191, and A102847.
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