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Abstract. Let the Tribonacci polynomial t(x) = x3
− x2

− x − 1 be irreducible over the
Galois field Fp where p is an arbitrary prime such that p ≡ 1 (mod 3) and let τ be any root

of t(x) in the splitting field K of t(x) over Fp. We prove that τ (p2+p+1)/3 = 1. Using this
identity we show that the period h(p) of the sequence (Tn mod p)∞n=0 where Tn is the nth
Tribonacci number divides (p2 + p+1)/3. Similar results will also be obtained for t(x) being
reducible over Fp. In this case we prove that the period h(p) divides (q− 1)/3 where q is the
number of elements of the splitting field of t(x) over Fp if and only if 2 is a cubic residue of
Fp.

1. Introduction and Preliminaries

The Tribonacci sequence (Tn)
∞

n=0 is defined by the third order linear recurrence Tn+3 =
Tn+2 + Tn+1 + Tn with a triple of initial values T0 = 0, T1 = 0, and T2 = 1. It is well-known,
[9, Theorem 1] that (Tn mod m)∞n=0 is simply periodic for any modulus m > 1. That is, the
first three terms which are repeated in (Tn mod m)∞n=0 are 0, 0, 1. The least positive integer
h(m) satisfying Th(m) ≡ Th(m)+1 ≡ 0 (mod m) and Th(m)+2 ≡ 1 (mod m) is called a period
of (Tn mod m)∞n=0. If m = p is a prime, h(p) depends in an essential way on the form of the
factorization of the Tribonacci polynomial t(x) = x3 − x2 − x− 1 over the Galois field Fp. Let
K denote the splitting field of t(x) over Fp and let α, β, γ be the roots of t(x) in K. Since the
discriminant of t(x) is equal to −22 · 11, for p 6= 2, 11, the roots α, β, γ are distinct. For any
0 6= ξ ∈ K, let ordK(ξ) denote the order of ξ in the multiplicative group K× of K. By [10,
Section 8], the problem of determining h(p) is equivalent to the problem of determining the
orders of α, β, γ in K×. See also [1, 2, 7]. Let I = {3, 5, 23, 31, . . .} be the set of all primes p
for which t(x) is irreducible over Fp, Q = {7, 13, 17, 19, . . .} be the set of all primes for which
t(x) splits over Fp into the product of a linear factor and an irreducible quadratic factor and
let L = {2, 11, 47, 53, . . .} be the set of all primes for which t(x) completely splits over Fp into
linear factors. Then we can state the following theorem.

Theorem 1.1. Let p 6= 2, 11 be a prime. Then

(i) h(p) = lcm(ordK(α), ordK(β), ordK(γ)).
(ii) If p ∈ I, then h(p) = ordK(τ) where τ is any root of t(x) in K.

(iii) p ∈ I or p ∈ L if and only if the Legendere-Jacobi symbol (p/11) = 1.
(iv) p ∈ I if and only if T 2

p ≡ −4/11 (mod p).
(v) p ∈ L if and only if Tp ≡ 0 (mod p).
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Statements (i) and (ii) are well-known. For example, see [1, p. 292], [7, p. 306] or consult
[10, p. 161]. Statement (iii) is a consequence of more general results of L. Stickelberger [5]
and G. Voronöı [8]. For details see [3]. Finally, statements (iv) and (v) are straightforward
consequences of [6, Theorem 4.3].

The following theorem is due to A. Vince [7, Theorem 4].

Theorem 1.2. Let p 6= 2, 11 be a prime. Then

(i) If p ∈ L, then h(p)|p − 1.
(ii) If p ∈ Q, then h(p)|p2 − 1.
(iii) If p ∈ I, then h(p)|p2 + p+ 1.

In Theorem 4.1 of this paper, we strengthen Vince’s result for p ≡ 1 (mod 3) as follows:

(i) If p ∈ L, then h(p)|p−1
3 if and only if 2 is a cubic residue of the field Fp.

(ii) If p ∈ Q, then h(p)|p
2
−1
3 if and only if 2 is a cubic residue of the field Fp.

(iii) If p ∈ I, then h(p)|p
2+p+1

3 .

To prove this statement, we shall need the following result presented in [3].

Theorem 1.3. Let p be an arbitrary prime such that p ≡ 1 (mod 3) and let τ be any root of

t(x) in the field Fp. Then

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p). (1.1)

Moreover, if τ is any root of t(x) in the splitting field K of t(x) over Fp, then 2τ is a cubic

residue of K, i.e., there exists ω ∈ K such that 2τ = ω3.

2. A Way to Distinguish the Cases p ∈ L and p ∈ I
For Primes (p/11) = 1, p ≡ 1 (mod 3)

Let F be a finite field with prime characteristic p ≡ 1 (mod 3). Then F = Fpn for a
positive integer n and there exists an ε ∈ F× with the property ε3 = 1, ε 6= 1. Therefore,
ε2+ε+1 = 0. Let F× denote the multiplicative group of F with a generator g. For e ∈ {0, 1, 2},
put Ce = {ξ ∈ F×; ξ = g3k+e, k ∈ Z, 0 ≤ k < (pn − 1)/3}. The sets Ce are called the cubic
classes of F and the elements of C0 the cubic residues of F. The following lemma can be found
in [3, Lemma 2.7].

Lemma 2.1. Let α, β, γ ∈ F. If αβγ is the cubic residue of F, then either α, β, γ belong to

distinct cubic classes of F or α, β, γ belong to the same cubic class of F.

Let f(x) = x3 + rx+ s ∈ F[x], r, s 6= 0. Assume that f(x) is irreducible over F or f(x) has

three distinct roots in F. Put d = s2

4 + r3

27 . Since char F 6= 2, 3, the element d is well defined.

Next, assume that there exists a λ ∈ F such that λ2 = d. Let

A = −
s

2
+ λ and B = −

s

2
− λ. (2.1)

Then AB = s2

4 − d = (− r
3)

3, which implies that

A is a cubic residue of F if and only if B is a cubic residue of F. (2.2)

The following lemma is essentially Cardano’s formula for the field F.

Lemma 2.2. Let A, B be cubic residues of the field F. Then there exist α, β ∈ F such that

α3 = A, β3 = B, αβ = − r
3 and α+ β is a root of f(x) in F.
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Proof. Since A, B are cubic residues of F, there exist α, γ ∈ F such that α3 = A, γ3 = B.
Then (αγ)3 = AB = (− r

3)
3 and, consequently, there exists e ∈ {0, 1, 2} such that αγεe = − r

3 .

Let β = γεe. Then β3 = B, αβ = − r
3 and f(α+ β) = (α+ β)3 + r(α+ β) + s = A+3αβ(α+

β) +B + rα+ rβ + s = −s− r(α+ β) + rα+ rβ + s = 0. �

Lemma 2.3. Let f(x) have three distinct roots in F. Then A,B are cubic residues of F.

Proof. Suppose that A and B are not cubic residues of F and let G be the splitting field of
x3 − A over F. Since A is a cubic residue of G, B is a cubic residue of G by (2.2). Applying
Lemma 2.2 to the field G, we see that there exist α, β ∈ G such that α3 = A, β3 = B, αβ = − r

3
and α+β is a root of f(x) in G. As assumed, the roots of f(x) belong to F and thus α+β ∈ F.
Since 1, α, α2 is a basis of the extension G/F, there exist a, b, c ∈ F such that β = aα2+ bα+ c.
Furthermore, α + β ∈ F and α + β = aα2 + (b + 1)α + c, implies a = 0, b = −1 and thus
β = −α+ c. Then B = β3 = −α3 +3α2c− 3αc2 + c3 = −A+3α2c− 3αc2 + c3, which implies
A+B = 3α2c− 3αc2 + c3. Next, A+B ∈ F implies c = 0. Hence, − s

2 −λ = B = −A = s
2 −λ,

which yields s = 0, and a contradiction follows. �

Combining (2.2), Lemma 2.2, and Lemma 2.3 we get the following theorem.

Theorem 2.4. The following statements are equivalent:

(i) The polynomial f(x) = x3 + rx+ s ∈ F[x] has three distinct roots in F.
(ii) A = − s

2 + λ is a cubic residue of F.
(iii) B = − s

2 − λ is a cubic residue of F.

Now we apply Theorem 2.4 to a Tribonacci polynomial t(x) and field F = Fp where p is an
arbitrary prime such that p ≡ 1 (mod 3) and (p/11) = 1.

The assumption (p/11) = 1 implies, by Theorem 1.1, part (iii), that t(x) is irreducible over
Fp, or t(x) has three distinct roots in Fp. Using the substitution x = y + 1

3 , we can easily

convert t(x) to the form t(y) = y3 − 4
3y − 38

27 . Hence, r = −4
3 , s = −38

27 , and d = 11
27 . Since

(19/11) = −1, we have r, s, d 6= 0 in the field Fp where p ≡ 1 (mod 3) and (p/11) = 1. After
some calculation, we find that (d/p) = (33/p) = 1 and thus there exists λ ∈ Fp such that
λ2 = d. Put κ = 9λ. Then κ2 = 33 and (2.1) yields A = 1

27 (19 + 3κ) and B = 1
27 (19− 3κ).

From this and from Theorem 2.4, we get the following criterion, which can be used for t(x)
and for a prime p ≡ 1 (mod 3), (p/11) = 1 to decide whether p ∈ L or p ∈ I.

Theorem 2.5. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Then the following

statements are equivalent:

(i) The Tribonacci polynomial t(x) has three distinct roots in Fp.

(ii) 19 + 3κ is a cubic residue of Fp.

(iii) 19− 3κ is a cubic residue of Fp.

The following proposition will be needed in the next section.

Proposition 2.6. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Furthermore, let

ρ = (13 + 3κ)/2 and σ = (13 − 3κ)/2 where κ ∈ Fp such that κ2 = 33. Then the following

statements are equivalent:

(i) The elements 2, ρ, σ belong to the same cubic class of Fp.

(ii) 26 + 6κ is a cubic residue of Fp.

(iii) 26− 6κ is a cubic residue of Fp.
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Proof. The equivalence of (ii) and (iii) follows from the equality (26 + 6κ)(26− 6κ) = (−8)3.
We prove that (i) implies (ii). Since 2 and ρ belong to the same cubic class of Fp, there exists
ω ∈ Fp such that ρ = 2ω3. Hence, ω3 = ρ/2 = (13 + 3κ)/4 = (26 + 6κ)/8, which proves
that 26 + 6κ is a cubic residue of Fp. Conversely, assume (ii). Then (26 + 6κ)/8 is a cubic
residue of Fp and thus there exists ω ∈ Fp such that ω3 = (26 + 6κ)/8. Hence, we have
2ω3 = (13 + 3κ)/2 = ρ, which means that 2 and ρ belong to the same cubic class of Fp. In
a similar way, we can deduce that 2 and σ belong to the same cubic class of Fp. Hence, (ii)
implies (i). The proof is complete. �

3. The Existence and Properties of the Roots of the Polynomial x3 − τ in the

Field Extension K/Fp for a Prime p ∈ I

Let p ∈ I. Recall that K is the splitting field of t(x) over Fp and α, β, γ are the roots of t(x)

in K. Then {α, β, γ} = {τ, τp, τp
2
} for any τ ∈ {α, β, γ}. Together with the Viète equation

αβγ = 1, this yields τp
2+p+1 = 1. Now we can prove the following lemma.

Lemma 3.1. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K. Then

there exist exactly three distinct roots ξ1, ξ2, ξ3 of x3 − τ in K.

Proof. Since K is a finite field, the multiplicative group K× is cyclic. Let g be a generator of

K×. Then τ = gt for a positive integer t. Since 1 = τp
2+p+1 = gt(p

2+p+1), we have p − 1|t.

Hence, 3|t. Set ξi = gt/3+(i−1)(p3−1)/3 for i ∈ {1, 2, 3}. Then ξ1, ξ2, ξ3 are three distinct roots
of x3 − τ in K. �

The proofs of the following lemmas are easy to see.

Lemma 3.2. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K. Further-

more, let ξ1, ξ2, ξ3 be the roots of x3 − τ in K. Then:

(i) {ξ1, ξ2, ξ3} = {ξ, εξ, ε2ξ} for any ξ ∈ {ξ1, ξ2, ξ3}.
(ii) ξ1ξ2ξ3 = τ .
(iii) ξ1 + ξ2 + ξ3 = ξ21 + ξ22 + ξ23 = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 = 0.

Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K. Further, let ξ be

an arbitrary root of x3 − τ in K. Put c(p) = −ξp
2+p+1. It is easy to see that c(p) does not

depend on the choice of ξ and τ . Since ξ3 = τ and τp
2+p+1 = 1, we have c(p)3 = −1. Hence

c(p) ∈ {−1,−ε,−ε2}. Furthermore, let w(x) = (x−ξ)(x−ξp)(x−ξp
2
). Then w(x) ∈ Fp[x] and

w(x) is irreducible over Fp. For further considerations we will need the following polynomials
defined in [3, Section 2]. For c = c(p), put f(x, c) = x3+A(c)x2 +B(c)x+C(c) ∈ Fp[x] where
A(c) = −18c2 + 3, B(c) = −9c2 − 27c − 24, and C(c) = 9c2 − 27c + 28. In particular, for
c = −1 we have f(x,−1) = x3 − 15x2 − 6x+ 64.

Lemma 3.3. For any prime p ∈ I, p ≡ 1 (mod 3), the following is true:

(i) f(x, c(p)) has three distinct roots in Fp belonging to distinct cubic classes of Fp.

(ii) Let c1, c2 ∈ {−1,−ε,−ε2} and b1, b2 ∈ Fp. If f(b31, c1) = f(b32, c2) = 0 then c1 = c2.

For a proof of (i) see [3, Theorem 3.2] and for a proof of (ii) consult [3, Lemma 3.3]. The
validity of the following lemma is easy to verify.

Lemma 3.4. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Then the polynomial

f(x,−1) = x3 − 15x2 − 6x+ 64 completely splits into linear factors over the field Fp and has

three distinct roots 2, ρ = (13 + 3κ)/2, and σ = (13− 3κ)/2 where κ ∈ Fp such that κ2 = 33.
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Now we are ready for the following theorem.

Theorem 3.5. Let p ∈ I and p ≡ 1 (mod 3). Then c(p) = −1.

Proof. By Theorem 2.5, 19−3κ is not a cubic residue of the field Fp. Since (19−3κ)(26+6κ) =
(−1+κ)3, the element 26+6κ is not a cubic residue of Fp either. By Lemma 3.4, the polynomial
f(x,−1) has three distinct roots 2, ρ, σ in Fp and Lemma 2.1, together with Proposition 2.6,
yields that 2, ρ, σ belong to distinct cubic classes of Fp. Hence, there exists a b2 ∈ Fp such
that b32 ∈ {2, ρ, σ} and f(b32,−1) = 0. By Lemma 3.3, part (i), there exists b1 ∈ Fp such that
f(b31, c(p)) = 0 and from Lemma 3.3, part (ii) we get c(p) = −1. �

Theorem 3.6. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the splitting

field K of t(x) over Fp. Furthermore, let ξ be any root of x3 − τ in K. Then ξp
2+p+1 = 1 and

τ
p2+p+1

3 = 1. (3.1)

Proof. From Theorem 3.5 and the definition of c(p) we immediately get ξp
2+p+1 = 1. Since

ξ3 = τ , we have τ (p
2+p+1)/3 = ξp

2+p+1 = 1 as required. �

Corollary 3.7. Let p ∈ I and p ≡ 1 (mod 3). Then u(x) := t(x3) = x9 − x6 − x3 − 1 factors
over Fp into the product of three irreducible polynomials w(x), w(εx), w(ε2x) with constant
terms equal to −1.

Remark 3.8. (i) Let p ∈ I and τ be an arbitrary root of t(x) in the splitting field K of t(x)
over Fp. It is easy to prove by induction that

τk = Tkτ
2 + (Tk−1 + Tk−2)τ + Tk−1, k > 1. (3.2)

From equality (3.2) it follows for k > 1 that

τk = ε if and only if Tk ≡ Tk+1 ≡ 0 (mod p) and Tk+2 ≡ ε (mod p). (3.3)

(ii) Put H =< gp−1 > where g is the generator of K×. Then H is a cyclic group of order

p2 + p + 1. Since τp
2+p+1 = 1, we have τ ∈ H and G =< τ > is a subgroup of H. Let p ≡ 1

(mod 3). Then in H, there exist exactly three elements belonging to Fp. These are 1, ε, ε2.
Moreover, together with 9 - p2 + p+ 1, (3.1) yields ε, ε2 6∈ G.

Theorem 3.9. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the splitting

field K of t(x) over Fp. Furthermore, let ξ ∈ {ξ1, ξ2, ξ3} be any root of x3 − τ in K. Then

ordK(ξ) = ordK(τ) or ordK(ξ) = 3 · ordK(τ). Moreover, exactly one of the roots ξ1, ξ2, ξ3 is

of an order equal to ordK(τ) and two roots are of orders equal to 3 · ordK(τ).

Proof. For brevity, put ordK(τ) = h and ordK(ξ) = k. We have ξ3 = τ and so ξ3h = τh = 1,
which means that k|3h. On the other hand, ξk = 1 implies ξ3k = 1. Together with ξ3 = τ
this yields τk = 1 and h|k follows. Consequently, there exist positive integers c1, c2 such
that c1 · k = 3 · h and k = c2 · h. Hence, we have c1c2 = 3, which yields c1 = 1, c2 = 3 or
c1 = 3, c2 = 1. Consequently, ordK(ξ) = ordK(τ) or ordK(ξ) = 3 · ordK(τ).

Since the orders of the elements ξ1, ξ2, ξ3 can only take on two values h and 3h, at least
two of them have the same order. Denote this order by h0. Without loss of generality,
we can assume ordK(ξ1) = ordK(ξ2) = h0. Put ξ1 = ξ. Since {ξ1, ξ2, ξ3} = {ξ, εξ, ε2ξ},
either ordK(ξ) = ordK(εξ) = h0 or ordK(ξ) = ordK(ε2ξ) = h0. Hence, it easily follows
that 3|h0 and thus h0 = 3r for some positive integer r. Using Lemma 3.2, part (ii), we get
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τ3r = (ξ1ξ2ξ3)
h0 = ξh0

3 = τ r. Hence, τ2r = 1. Since 2 - h, we have h|r. This, together with
h0 ∈ {h, 3h}, yields h0 = 3h. Consequently, we have either

ordK(ξ1) = ordK(ξ2) = ordK(ξ3) = 3 · ordK(τ) = 3h (3.4)

or

ordK(ξ1) = ordK(ξ2) = 3 · ordK(τ) and ordK(ξ3) = ordK(τ). (3.5)

In both cases, there exist u, v ∈ {ε, ε2} such that ξh1 = u, and ξh2 = v. First, assume that u 6= v.
Then ξh1 ξ

h
2 = ε3 = 1, which yields ξh3 = (ξ1ξ2ξ3)

h = τh = 1. Hence, we have ordK(ξ3)|h and
(3.5) follows. Further, assume that u = v. Since we have put ξ1 = ξ, we have either ξh = εhξh

or ξh = ε2hξh. Hence, 3|h. Assume (3.4) is true. Then ordK(ξ3) = 3h and, thus, 9|ordK(ξ)

for any ξ ∈ {ξ1, ξ2, ξ3}. Since 9 - p2 + p+ 1, we have ξp
2+p+1 6= 1, which is a contradiction to

Theorem 3.6. Hence, we have (3.5) and the theorem follows. �

Corollary 3.10. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the
splitting field K of t(x) over Fp. Then x9 − τ has exactly 9 distinct roots in K.

Proof. Since τ
p2+p+1

3 = 1, the proof is a simple modification of the proof of Lemma 3.1. �

Example 3.11. Let p = 37. Then p ≡ 1 (mod 3) and it can be verified that p ∈ I. Let K
be the splitting field of t(x) over F37 and let τ be any root of t(x) in K. By Lemma 3.1, the
polynomial x3 − τ has three distinct roots ξ1, ξ2, ξ3 in K. In the field F37 we have ε = 10,
and Lemma 3.2, part (i), yields ξ2 = 10ξ1 and ξ3 = 15ξ1. Using the basis 1, τ, τ2 of the field
extension K/Fp, ξ1, ξ2, ξ3 can be written in the form

ξ1 = 2 + 16τ + 24τ2, ξ2 = 20 + 12τ + 18τ2, ξ3 = 15 + 9τ + 32τ2.

By direct calculation we obtain ordK(τ) = 469, ordK(ξ1) = ordK(ξ2) = 1407 and ordK(ξ3)
= 469. Consequently, by Theorem 1.1, part (ii), and Theorem 3.9, h(37) = ordK(τ) =
ordK(ξ3) = 469. Furthermore, by Corollary 3.10, there exist 9 distinct roots of x9 − τ in K:

ξ11 = 4 + 36τ + 12τ2, ξ12 = 3 + 27τ + 9τ2, ξ13 = 30 + 11τ + 16τ2,
ξ21 = 21 + 4τ + 26τ2, ξ22 = 25 + 3τ + τ2, ξ23 = 28 + 30τ + 10τ2,
ξ31 = 11 + 25τ + 33τ2, ξ32 = 27 + 21τ + 7τ2, ξ33 = 36 + 28τ + 34τ2.

Moreover, for any i, j ∈ {1, 2, 3}, we have ξ3ij = ξi. Let w1(x) = x3 + 17x2 + 31x − 1,

w2(x) = w1(εx) = x3 + 22x2 +29x− 1, and w3(x) = w1(ε
2x) = x3 + 35x2 +14x− 1. Then ξi,

ξpi , ξ
p2

i , i ∈ {1, 2, 3} are the roots of wi(x) and x9 − x6 − x3 − 1 ≡ w1(x)w2(x)w3(x) (mod 37)
as required by Corollary 3.7.

4. Periods of the Tribonacci Sequence Modulo a Prime p ≡ 1 (mod 3)

Recall that, for a prime p, h(p) denotes the period of (Tn mod p)∞n=0. In this section we
prove our main theorem extending Vince’s result [7, Theorem 4].

Theorem 4.1. Let p be an arbitrary prime, p ≡ 1 (mod 3).

(i) If p ∈ L, then h(p)|p−1
3 if and only if 2 is a cubic residue of the field Fp.

(ii) If p ∈ Q, then h(p)|p
2
−1
3 if and only if 2 is a cubic residue of the field Fp.

(iii) If p ∈ I, then h(p)|p
2+p+1

3 .
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Proof. The congruence p ≡ 1 (mod 3) implies p 6= 2, 11.
(i) Let p ∈ L and let τ be any root of t(x) in Fp. If 2 is a cubic residue of Fp, it follows

from (1.1) that τ (p−1)/3 ≡ 1 (mod p). Hence, ordFp(τ)|
p−1
3 and Theorem 1.1, part (i), imply

h(p)|p−1
3 . On the other hand, if h(p)|p−1

3 , then ordFp(τ)|
p−1
3 for any root τ of t(x) in Fp.

Consequently, τ (p−1)/3 ≡ 1 (mod p) and (1.1) yields 22(p−1)/3 ≡ 1 (mod p). This implies

that either 2(p−1)/3 ≡ −1 (mod p) or 2 is a cubic residue of Fp. Suppose that 2(p−1)/3 ≡ −1

(mod p). Then 1 ≡ 2p−1 ≡ (2(p−1)/3)3 ≡ (−1)3 ≡ −1, which yields 2 ≡ 0 (mod p). Since
p 6= 2, a contradiction follows.

(ii) Let p ∈ Q. Then the multiplicative group K× of the splitting field K of t(x) over Fp

has p2 − 1 elements. Let τ be any root of t(x) in K. Then, by Theorem 1.3, there exists

ω ∈ K such that 2τ = ω3. Let 2 be a cubic residue of Fp. Then 2(p
2
−1)/3 = 1 in K and so

τ (p
2
−1)/3 = (2τ)(p

2
−1)/3 = ωp2−1 = 1. This implies ordK(τ)|p

2
−1
3 and Theorem 1.1, part (i),

yields h(p)|p
2
−1
3 . Conversely, assume that h(p)|p

2
−1
3 . Then ordK(τ)|p

2
−1
3 for any root τ of

t(x) in K and τ (p
2
−1)/3 = 1. From 2τ = ω3, we get (2τ)(p

2
−1)/3 = ωp2−1 = 1, which implies

2(p
2
−1)/3 = 1 in K. Clearly, 1 ≡ 2(p

2
−1)/3 ≡ (2(p−1)/3)p+1 ≡ 22(p−1)/3 (mod p). Using an

argument similar to that in (i), we obtain 2(p−1)/3 ≡ 1 (mod p) and (ii) follows.
(iii) Let p ∈ I and let τ be any root of t(x) in the splitting field K of t(x) over Fp. Then,

by (3.1), we have τ (p
2+p+1)/3 = 1. This implies ordK(τ)|p

2+p+1
3 and part (ii) of Theorem 1.1

yields h(p)|p
2+p+1

3 as required. �

Remark 4.2. If p ≡ 1 (mod 3), then 2 is a cubic residue of the field Fp if and only if there
are integers u and v such that p = u2 + 27v2 [4, p. 119].

Let m be a positive integer, m > 1. In 1978, M. E. Waddill [9, Theorem 2] proved:

if Tk ≡ Tk+1 ≡ 0 (mod m), then T 3
k+2 ≡ 1 (mod m). (4.1)

Moreover, if k is the least positive integer such that Tk ≡ Tk+1 ≡ 0 (mod m), then either
Tk+2 ≡ 1 (mod m) or T3k+2 ≡ 1 mod m and the period h(m) of (Tn mod m)∞n=0 is k or 3k [9,
Theorem 10]. If m = p ∈ I, we can say more.

Proposition 4.3. Let k be the least positive integer such that Tk ≡ Tk+1 ≡ 0 (mod p). If

p ∈ I, then h(p) = k.

Proof. By (4.1), the congruences Tk ≡ Tk+1 ≡ 0 (mod p) imply T 3
k+2 ≡ 1 (mod p). Suppose

that Tk+2 6≡ 1 (mod p). First, it is evident that, for p ≡ 2 (mod 3), we have T 3
k+2 ≡ 1 (mod p)

if and only if Tk+2 ≡ 1 (mod p). Hence, p ≡ 1 (mod 3) or p = 3. Let p ≡ 1 (mod 3). Then
Tk+2 6≡ 1 (mod p) implies Tk+2 ≡ ε (mod p) and (3.3) yields τk = ε. Since, by Remark 3.8,
we have ε 6∈ G =< τ >, a contradiction follows. Finally, for p = 3, the proof can be done by
direct calculation. �

Let (tn)
∞

n=0 = (a, b, c, a+b+c, a+2b+2c, . . .) be a generalized Tribonacci sequence beginning
with an arbitrary triple of integers t0 = a, t1 = b, t2 = c. In 2008, J. Klaška [2] investigated
the period h(m)[a, b, c] of the sequence (tn mod m)∞n=0 where the modulus m is a power of a
prime. In particular, if m = p ∈ I, then, by [2, pp. 271–274], we have h(p)[a, b, c] = h(p) if
and only if [a, b, c] 6≡ [0, 0, 0] (mod p). Together with part (iii) of Theorem 4.1 this yields the
following proposition.
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Proposition 4.4. Let a, b, c be arbitrary integers and (tn)
∞

n=0 the generalized Tribonacci se-

quence beginnig with t0 = a, t1 = b, t2 = c. If p is a prime, p ∈ I, p ≡ 1 (mod 3) then

h(p)[a, b, c]
∣

∣

p2+p+1
3 .
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