
ON CERTAIN COMBINATIONS OF HIGHER POWERS

OF FIBONACCI NUMBERS

R. S. MELHAM

Abstract. We present identities that we feel can be regarded as higher order analogues of
the well-known identity F

2
n
+ F

2
n+1 = F2n+1. We give three theorems corresponding to the

powers 4, 6, and 8. We also state two conjectures that give the form of similar identities that
involve higher powers.

1. Introduction

To put our main results in context, we begin with the well-known identity

F 2
n + F 2

n+1 = F2n+1. (1.1)

The generalization
F 2
n + (−1)n+k−1F 2

k = Fn−kFn+k (1.2)

appears as I19 in [2, page 59]. Replacing k by n+ k in (1.2), we obtain

(−1)k+1F 2
n + F 2

n+k = FkF2n+k. (1.3)

The form of (1.1) motivated us to discover

F 4
n + 4F 4

n+1 + 4F 4
n+2 + F 4

n+3 = 6F 2
2n+3. (1.4)

We then found
F 4
n − 6F 4

n+2 − 6F 4
n+4 + F 4

n+6 = 56F 2
2n+6 + 20, (1.5)

F 4
n + 19F 4

n+3 + 19F 4
n+6 + F 4

n+9 = 1224F 2
2n+9 − 480, (1.6)

and
F 4
n − 46F 4

n+4 − 46F 4
n+8 + F 4

n+12 = 20304F 2
2n+12 + 8100. (1.7)

In the opinion of this writer, identities (1.5)-(1.7) appear unusual due to the presence of
the constants on the far right side. In fact (1.4)-(1.7) belong to an infinite family of similar
identities. We present this family in Section 2 and in an analogous manner to 1.3.

We also discovered
F 6
n + 8F 6

n+1 + 8F 6
n+2 + F 6

n+3 = 10F 3
2n+3, (1.8)

which is part of an infinite family of similar identities. We also present this family in Section
2. In the sequel we discuss the situation for higher powers.

2. Main Results and a Method of Proof

Our first main result, which is presented in the theorem that follows, has (1.4)-(1.7) as
special cases.
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Theorem 2.1. Let n and k be integers. Then

F 4
n +

(

(−1)k+1L2k + 1
)

F 4
n+k +

(

(−1)k+1L2k + 1
)

F 4
n+2k + F 4

n+3k (2.1)

= FkL2kF3kF
2
2n+3k + 10(−1)kFk−1F

4
kFk+1.

Our next theorem gives a family of identities that includes (1.8) as a special case.

Theorem 2.2. Let n and k be integers. Then

(−1)k+1F 6
n + (L4k + 1)F 6

n+k + (−1)k+1 (L4k + 1)F 6
n+2k + F 6

n+3k (2.2)

= FkF3kF5kF
3
2n+3k + 15(−1)kFk−1F

4
kFk+1F3kF2n+3k.

Each result in this paper can be proved with the use of a method introduced by Dresel
[1]. We have found Dresel’s method of proof extremely useful in past work, employing it, for
instance, in [3, 4], and [5]. To illustrate, we prove Theorem 2.2.

As Dresel explains, since (−1)n = (αβ)n, where α and β are the roots of x2 − x − 1 = 0,
then (−1)n is of degree 2 in the variable n. Therefore, we insert (−1)2n into the product on
the far right of (2.2). In the terminology of Dresel, this makes (2.2) homogeneous of degree 6
in the variable n.

Next we look at the variable k. Write the left side as

(−1)9k+1F 6
n + (−1)4k

(

L4k + (−1)2k
)

F 6
n+k + (−1)k+1

(

L4k + (−1)2k
)

F 6
n+2k + F 6

n+3k,

and the right side as

FkF3kF5kF
3
2n+3k + 15(−1)3k(−1)2nFk−1F

4
kFk+1F3kF2n+3k.

This makes (2.2) homogeneous of degree 18 in the variable k.
We noted above that (2.2) is homogeneous of degree 6 in the variable n. Therefore, to prove

(2.2) with the verification theorem of Dresel [1, page 171], we need only verify its validity
for seven distinct values of n. Accordingly, we write down the cases that correspond to n =
1, 2, 3, 4, 5, 6, and 7. We are required to prove each of these seven cases. Now, each of these
seven cases is an identity that is homogeneous of degree 18 in the variable k. Therefore, to
prove any one of these seven cases, we need only verify its validity for nineteen distinct values
of k; say k = 1, 2, . . . , 19. We are required to verify (2.2) for 7×19 distinct ordered pairs (n, k).
We managed to perform these verifications, and thereby complete the proof of Theorem 2.2,
in a matter of seconds with the use of the computer algebra system Mathematica 6.0.

3. Higher Powers

Similar identities for higher powers exist and are very lengthy. To illustrate we discuss the
next case in which the powers on the left are 8. For convenience we define ai = ai(k) and
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bi = bi(k) as

a0 = a5 = 1;

a1 = a4 = (−1)k+1 (L6k + L2k) + 1;

a2 = a3 = L8k + (−1)k+1L6k + L4k + (−1)k+1L2k + 2;

b0 = FkF3kL4kF5kF7k;

b1 = 4(−1)kF 4
kF3kF5k

(

L8k + 3(−1)kL6k + 6L4k + 10(−1)kL2k + 9
)

;

b2 = 2F 7
kF3k

(

L10k + 6(−1)kL8k + 21L6k + 56(−1)kL4k + 99L2k + 117(−1)k
)

.

We are now able to state our third theorem.

Theorem 3.1. Let ai, 0 ≤ i ≤ 5, and bi, 0 ≤ i ≤ 2, be as defined above. Then

a0F
8
n + a1F

8
n+k + a2F

8
n+2k + a3F

8
n+3k + a4F

8
n+4k + a5F

8
n+5k (3.1)

= b0F
4
2n+5k + b1F

2
2n+5k + b2.

The proof of Theorem 3.1 follows the same lines as the proof of Theorem 2.2. By inserting
appropriate powers of (−1)n, we may regard (3.1) as being homogeneous of degree 8 in the
variable n. We also note that in (3.1) the terms a4F

8
n+4k, a5F

8
n+5k, and b0F

4
2n+5k are each

of degree 40 in the variable k. Therefore, by inserting appropriate powers of (−1)k into each
of the remaining six terms we may regard (3.1) as being homogeneous of degree 40 in the
variable k. We are therefore required to verify (3.1) for 9 × 41 distinct ordered pairs (n, k)
in the same manner described for the proof of Theorem 2.2. Once again, we have performed
these verifications with the use of Mathematica 6.0.

We have not found the general form of such identities where the powers on the left are 10
or higher, since such identities become unwieldy very quickly. However, by examining specific
cases, we are able to say something about the structure of such identities. Our observations
are contained in the two conjectures that follow.

Conjecture 3.2. For p ∈ {2, 4, 6, 8, . . .} and any positive integer k, there exist integers

a0, a1, . . . , ap+1, and integers b0, b1, . . . , bp, such that

p+1
∑

i=0

aiF
2p
n+ki =

p
∑

i=0

biF
i
2n+(p+1)k.

Furthermore, ai = ap+1−i for i = 0, 1, . . . , p/2, with a0 = ap+1 = 1. Also, b1 = b3 = · · · =
bp−1 = 0.

Conjecture 3.3. For p ∈ {3, 5, 7, 9, . . .} and any positive integer k, there exist integers

a0, a1, . . . , ap, and integers b0, b1, . . . , bp, such that

p
∑

i=0

aiF
2p
n+ki

=

p
∑

i=0

biF
i
2n+pk.

Furthermore, ai = (−1)k+1ap−i for i = 0, 1, . . . , (p − 1)/2, with a0 = (−1)k+1 and ap = 1.
Also, b0 = b2 = · · · = bp−1 = 0.
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In order to illustrate Conjectures 3.2 and 3.3, we present an instance of each. For (p, k) =
(4, 2) an instance of Conjecture 3.2 is

F 8
n − 328F 8

n+2 + 1927F 8
n+4 + 1927F 8

n+6 − 328F 8
n+8 + F 8

n+10 (3.2)

= 7796360F 4
2n+10 + 6219840F 2

2n+10 + 617168.

For (p, k) = (3, 2) an instance of Conjecture 3.3 is

−F 6
n + 48F 6

n+2 − 48F 6
n+4 + F 6

n+6 = 440F 3
2n+6 + 240F2n+6. (3.3)

We invite the reader to check the validity of (3.2) and (3.3), and to also check that in each
case the stated conditions on the ai and bi are satisfied. The reader may also wish to construct
further instances of Conjectures 3.2 and 3.3.

Finally, we acknowledge the input of an anonymous referee whose comments have served to
significantly improve the presentation of this paper.
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