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Abstract. Powers of matrices whose elements form semimagic or magic squares are inves-
tigated and powers of several examples of classical magic squares are computed. Conditions
that guarantee their magic properties (“magicness”) are retained or lost are explored.

1. Introduction

Magic squares have interested mathematicians and puzzle solvers for centuries. There is
even an 8 × 8 magic square attributed to Benjamin Franklin [1, 3, 4, 28]. A variety of in-
teresting discoveries have been made and related research studies have ensued. Several such
contributions can be found listed in [29]. A delightful puzzle book containing a chapter on
magic and Latin squares with many examples can be found in [16]. The approach here will
be to investigate the “magicness” of the powers of a variety of magic and semimagic squares.
A few comments about terminology should prove interesting and helpful, and a proposition
concerning row and column sums in a square matrix will be used throughout the paper.

Terminology: An n×n array is called magic if the sums of the rows, columns and the main
and secondary diagonals are all equal. If so, the sum N is called the magic constant. The
definition usually, but not always, implies that the square is regular; namely, that numbers in
the square array run from 1 to n2. Stark [24, p. 118], for example uses 0 to n2 − 1, and also
indicates that using the “staircase” procedure for magic square construction, attributed to De
la Loubre [16, p. 4 ff.] and generalized by D. N. Lehmer [24, pp. 10, 118 ff.], one may start
with any number.

If the diagonals do not add to the magic constant, the square is called semimagic, and if all
of the rows, columns, and diagonals of an array with consecutive integers yield different sums,
the square is antimagic.

In a magic square, if the numbers symmetrically opposite the center, ai,j + an−i+1,n−j+1,
add to a constant the magic square is called associative (or associated) [13].

Comments: The magic constant, N , of an n×n magic or semimagic square can be computed
in various ways. For example, as seen in the array Z in Section 4, N = (largest entry + smallest
entry)(n/2) where the entries need not even be sequential [13, 16]; and if the square is regular,
N = n(n2 + 1)/2 [19, p. 85]. Various additional types of magic squares and their properties
as well as other magic configurations have been explored but will not be considered here. See
for example, [14, 15, 17, 23, 24, 25, 29] and the references cited there. For the purpose of
brevity the phrase “matrices whose entries represent semimagic or magic squares” will simply
be referred to as semimagic or magic.

Proposition 1.1. If A and B are n×n semimagic matrices with magic constants M and N ,
respectively, then AB and BA are semimagic with magic constant MN .
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Proof. Let A = (aij), B = (bij), and C = (cij) where cij =
∑n

k=1 aikbkj . The sum of the jth
column of C is

n∑
i=1

cij =

n∑
i=1

n∑
k=1

aikbkj =

n∑
k=1

n∑
i=1

aikbkj =

n∑
k=1

Mbkj = M

n∑
k=1

bkj = MN.

The argument for the sum of the ith row is similar. �

It is noted that if A is magic and if some power of A is constant, then since a constant
matrix times a magic square is constant, it follows that all higher powers are magic.

2. Powers of 3× 3 Magic Square Matrices

Many papers have addressed third order magic squares. See for example, Gauthier [12] and
Van den Essen [27] and the works cited there. Some of their work is duplicated here but the
approach here varies slightly.

For n = 3 and with entries from 1 to 32 = 9, the magic constant is N = 3(10/2) = 15. First
consider the antimagic square

A0 =

 1 2 3
8 9 4
7 6 5

 , A2
0 =

 38 38 26
108 121 80
90 98 70

 ,

A3
0 =

 524 574 396
1636 1785 1208
1364 1482 1012

 , A4
0 =

 7888 8590 5848
24372 26585 18088
20304 22138 15080

 .

The row sums for A0 are 6, 21 and 18; the column sums are 16, 17, and 12; and the diagonal
sums are 15 and 19. Those for A2

0 are 102, 309 and 258; 236, 257 and 176; and 229 and 237,
respectively. Those for A3

0 are 1494, 4629 and 3858; 3524, 3841 and 2616; and 3321 and 3545,
respectively. Those for A4

0 are 22326, 69045 and 57522; 52564, 57313 and 39016; and 49553
and 52737, respectively. In general it appears that powers of an antimagic square will remain
antimagic.

Next, since the digit 1 cannot dwell on a diagonal, and using the method of De la Loubre
[16], the following semimagic square, for example, can be constructed.

A1 =

 9 2 4
1 6 8
5 7 3

 , A2
1 =

 103 58 64
55 94 76
67 73 85

 , A3
1 =

 1305 1002 1068
969 1206 1200
1101 1167 1107

 .

The next and probably the most famous 3×3 as shown by Chernick [7] and others is magic.

A2 =

 8 1 6
3 5 7
4 9 2

 , A2
2 =

 91 67 67
67 91 67
67 67 91

 , A3
2 =

 1197 1029 1149
1077 1125 1173
1101 1221 1053


A4

2 =

 17259 16683 16683
16683 17259 16683
16683 16683 17259

 , A5
2 =

 254853 250821 253701
251973 253125 254277
252549 255429 251397

 .

A1 is semimagic; as are its powers, with magic constants 15, 152, and 153, respectively. A2,
A3

2, and A5
2 are all magic with magic constant 15, 153, and 155, respectively, but A2

2 and A4
2

with magic constants 152 and 154, respectively, are only semimagic.
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Note that Trigg [26] uses A2, which the Chinese called the lo shu magic square, to generate
a variety of antimagic squares. Also note that A2 (except for rotations, etc.) is the only 3× 3
regular magic square, which is not surprising since the center digit for a regular odd magic
square must be the median, N/n, [7, 16] which here is 15/3 = 5. Powers of A2 have been
considered in detail in other papers. For example, see [12, 27] for alternate detailed proofs of
the following.

Proposition 2.1. Let M be an associative 3× 3 magic square with magic constant m. Then
M2n+1 is magic with magic constant m2n+1. But M2n is only semimagic.

Proof. It follows from Chernick [7] that any 3× 3 magic square, M , can be written as [k] + S

where [k] = k

 1 1 1
1 1 1
1 1 1

 and S =

 a −(a+ b) b
−(a− b) 0 a− b

−b a+ b −a

 for some constants k,

a, and b. Note next that S is magic with magic constant 0, [k]S = S[k] = [0] and that
[k]n = [(3k)n−1k]. Thus Mn = ([k] + S)n = [k]n + Sn = [(3k)n−1k] + Sn. By induction it can
be seen that

S2n = 3n−1(a2 − b2)n · P and S2n+1 = 3n(a2 − b2)n · S where P =

 2 −1 −1
−1 2 −1
−1 −1 2

.
Since magic and semimagic squares are closed under addition it also follows that M2n =

(3k)2n−1[k]+S2n = (3k)2n−1[k]+3n−1(a2−b2)nP . Since [k] is magic and P is only semimagic,
M2n is only semimagic. Also, M2n+1 = (3k)2n[k] + S2n+1 = (3k)2n[k] + 3n(a2 − b2)nS and
since [k] and S are both magic, M2n+1 is always magic. Furthermore, if the magic constant
for M1 is m, it follows from Proposition 1.1 in the introduction that the magic constant for
Mn will be mn. �

For example, for k ≥ 1, A2k
2 is semimagic, with magic constant 152k and A2k−1

2 is magic
with magic constant 152k−1.

Finally note that because S is magic with magic constant 0, any numbers could be used for
a and b, including Fibonacci, Jacobsthal, Lucas, Pell or other familiar sequential numbers.

The general question of the existence of magic squares with only distinct Fibonacci numbers
was asked by Alfred [2], and later Brown [6], by contradicting the sum of Fibonacci numbers
formula, proved that no such magic square can exist. Later Madachy [20] asked for a con-
structive proof that no such magic square can exist with consecutive Fibonacci numbers and
provided a proof [21] by showing that the largest Fibonacci number in such an array must be
greater than the magic constant.

3. Powers of 4× 4 Magic Square Matrices

First, consider the Freitag magic square involving Fibonacci numbers [11]. She derived a
formula for constructing any number of such magic squares, [Fa], having magic constant Fa+8.

[Fa] =


Fa+2 Fa+6 Fa+1 + Fa+6 Fa+4

Fa+3 + Fa+6 Fa+3 Fa+1 + Fa+5 Fa + Fa+4

Fa+2 + Fa+5 Fa + Fa+6 Fa+5 2Fa+1

Fa+1 + Fa+4 Fa+1 + Fa+3 Fa + Fa+2 Fa+7

 ,
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and exhibited in the example

[F5] =


13 89 97 34
110 21 63 39
68 94 55 16
42 29 18 144

 , [F5]
2 =


17983 13130 12815 10361
9662 17284 16166 11183
15636 13660 15831 9162
11008 10215 9483 25583

 .

[F5] is magic but not associative with magic constant F13 = 233. [F5]
2 is only semimagic with

magic constant (233)2. Likewise [F5]
3 and [F5]

4 are semimagic with magic constants (233)3

and (233)4, respectively. In all three cases both diagonals fail to sum to the magic constant.
Note that [F5] is not associative because, for example, 13 + 144 ̸= 34 + 42. Thus it does not
satisfy the criterion of Proposition 3.1 below. However, it does follow from Proposition 1.1
that the kth powers, k > 2, of [F5] are also semimagic with magic constant (233)k.

Note that by using relationships between Fibonacci and Lucas numbers a magic square
analogous to [Fa] can be constructed.

Recalling the Pell recursion, Pn+2 = 2Pn+1 + Pn, with P0 = 0 and P1 = 1, it is possible to
construct a Pell-type magic square, [Pa], analogous to Freitag’s [Fa].

[Pa] =


Pa+2 2Pa+5 + 4Pa+4 2Pa+1 + 4Pa+6 2Pa+3 + 4Pa+2

2Pa+3 + 4Pa+6 2Pa+3 2Pa+5 + 2Pa+1 Pa + 4Pa+4

2Pa+5 + 4Pa+2 Pa + 4Pa+6 2Pa+5 4Pa+1

2Pa+1 + 4Pa+4 2Pa+3 + 2Pa+1 Pa + 4Pa+2 2Pa+7

 .

The magic constant is seen to be Pa+8.
Other Pell-type arrays are possible. For example, interested readers might try to construct

one with magic constant Pa+14. Additional arrays using any number of familiar sequences
could also be constructed.

Next consider the antimagic square

B0 =


15 2 12 4
1 14 10 5
8 9 3 16
11 13 6 7

 , B2
0 =


367 218 260 290
164 353 212 269
329 377 291 237
303 349 322 254

 , and

B3
0 =


10993 9896 9104 8748
7468 10675 7748 7696
10247 11636 10013 9516
10264 11692 9616 9887

 .

The row sums of B0 are 33, 30, 36 and 37; whereas the column sums are 35, 38, 31 and
32; and, the diagonal sums are 39 and 34. The row sums of B2

0 are 1135, 998, 1234 and 1228;
whereas the column sums are 1163, 1297, 1085 and 1050; and, the diagonal sums are 1265
and 1182. The row sums of B3

0 are 38741, 33587, 41412 and 41459; whereas the column sums
are 38972, 43899, 36481 and 35847; and, the diagonal sums are 41568 and 38396. Again it
appears that the powers of antimagic arrays are also antimagic.

The following famous example is attributed to Albrecht Dürer, a sixteenth-century German
painter. See [5, 16].
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B1 =


16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

 , B2
1 =


341 285 261 269
261 301 309 285
285 309 301 261
269 261 285 341

 ,

B3
1 =


10306 9474 9410 10114
9602 9922 9986 9794
9858 9666 9730 10050
9538 10242 10178 9346

 , B4
1 =


337412 333828 332292 332804
332292 334852 335364 333828
333828 335364 334852 332292
332804 332292 333828 337412

 ,

B5
1 =


11389576 11336328 11332232 11377288
11344520 11365000 11369096 11356808
11360904 11348616 11352712 11373192
11340424 11385480 11381384 11328136

 .

B1, B
3
1 and B5

1 are all magic with magic constant 34, 343, and 345, respectively; but B2
1

and B4
1 with magic constants 342 and 344, respectively, are only semimagic. Observations of

powers of B1 suggest the following.

Proposition 3.1. Let M be an associative 4× 4 magic square with magic constant m. Then
M2n+1 is magic with magic constant m2n+1. But M2n is only semimagic.

The proof is somewhat analogous to that of Proposition 2.1 using the method of Chernick
[7] to determine the matrices [k] and S. The matrix [k] is determined from the magic constant
of the given magic square, M , while S can be shown to be

S =


2a− 2c −2a+ c+ d 2b+ c+ d −2b− 2d

−2b+ c− d 2b −2a 2a− c+ d
−2a+ c− d 2a −2b 2b− c+ d

2b+ 2d −2b− c− d 2a− c− d −2a+ 2c

 ,

and that S3 is a constant multiple of S. For example, for k ≥ 1, B2k
1 is semimagic, with magic

constant 342k and B2k−1
1 is magic with magic constant 342k−1.

4. Examples of Powers of Magic Square Matrices of Order 5–7

Consider the non-regular 5×5 magic square [16, p. 8]. Note that the magic number satisfies
the requirement (the smallest entry + the largest entry) (n/2) = (4+36)(5/2) = 100. However
the central number, 27, is not the median, 100/5 = 20.

V =


4 13 19 28 36
26 35 8 11 20
15 18 27 33 7
34 5 14 22 25
21 29 32 6 12

 , V 2 =


2347 2033 2237 1714 1669
1928 2342 1784 1739 2207
2202 1679 1844 2277 1998
1749 1704 2172 2103 2271
1774 2242 1963 2167 1854

 .

V is magic with magic constant N = 100, but V 2 is only semimagic with V 2 magic constant
(100)2. It can be shown that V 3 is magic with magic constant (100)3 and that V 4 is only
semimagic with magic constant (100)4.
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The 6 × 6 magic square [16, p. 33] shown next has magic constant N = 111, but all of its
kth powers can be shown to be only semimagic, and with magic constant (111)k.

W =


31 9 2 22 27 20
3 32 7 21 23 25
8 28 6 26 19 24
35 1 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

 ,

W 2 =


2664 1500 2361 1881 2040 1875
1770 2283 2472 1878 1932 1986
1956 2121 2448 1902 1932 1962
2307 1878 1611 2253 2175 2097
2121 2040 1635 2229 2175 2121
1503 2499 1794 2178 2067 2280

 .

The following 7 × 7 example [16, p. 12] shows that an odd order magic square satisfying
the conditions of Proposition 1.1 does not imply that an even power cannot be magic. The
proposition only guarantees that a product of magic (and hence, semimagic) squares will be
semimagic and not necessarily magic.

Z =



59 99 167 11 79 147 187
91 131 199 43 111 151 23
95 163 35 75 143 183 55
127 195 39 107 175 19 87
159 31 71 139 179 51 119
191 63 103 171 15 83 123
27 67 135 203 47 115 155


,

Z2 =



75439 72415 81823 92687 66591 92127 79919
88767 81487 76447 72079 80927 91231 70063
92463 70735 88879 81039 74655 75215 78015
76335 77791 91679 69391 91679 77791 76335
78015 75215 74655 81039 88879 70735 92463
70063 91231 80927 72079 76447 81487 88767
79919 92127 66591 92687 81823 72415 75439


.

Z and Z2 are both magic with magic constant 749 and 561001 = (749)2, respectively. Z3 and
Z5 are magic, while Z4 and Z6 are semimagic failing to be magic on the main diagonal. But
the magic constants are the appropriate powers of 749.

5. Ben Franklin’s 8× 8 Magic Square Matrix, BF

An informative and entertaining presentation of the history and structuring of Franklin
magic squares can be found in [3]. Several variations of the square have been considered. For
example, one by Abrahams is found in the “Magic Squares” section of the Suzanne Alejandre
Math Forum at Drexel web site [1]. Andrews [4, p. 97 ff.] discusses a 16× 16 Franklin magic
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square variation. The Franklin magic Square displayed here is given by Alejandre in [1] as

BF =



14 3 62 51 46 35 30 10
52 61 4 13 20 29 36 45
11 6 59 54 43 38 27 22
53 60 5 12 21 28 37 44
55 58 7 10 23 26 39 42
9 8 57 56 41 40 25 24
50 63 2 15 18 31 34 47
16 1 64 49 48 33 32 17


.

Proposition 5.1. The Alejandre Form of the Ben Franklin 8× 8 Magic Square and all of its
kth integral powers are magic, with magic constant (260)k.

The proof follows from the comment indicated after Proposition 1.1 in the introduction and
is illustrated by the following comments.

(BF )2 =



8386 8514 8386 8514 8386 8514 8386 8514
8514 8386 8514 8386 8514 8386 8514 8386
8386 8514 8386 8514 8386 8514 8386 8514
8514 8386 8514 8386 8514 8386 8514 8386
8514 8386 8514 8386 8514 8386 8514 8386
8386 8514 8386 8514 8386 8514 8386 8514
8514 8386 8514 8386 8514 8386 8514 8386
8386 8514 8386 8514 8386 8514 8386 8514


.

Proof. (BF )3 is the constant matrix [2197000]. Both BF and (BF )2 are magic with magic
constants 260 and (260)2, respectively. Since (BF )3 is a constant matrix, it follows that it
is magic with magic constant 8(2197000) = 17576000 = (260)3. Thus (BF )k is a constant
matrix for k > 2, with magic constant (260)k. Finally (BF )k+1 is magic with magic constant
(260)k+1. �

For example, (BF )4 is a constant matrix [571220000] with magic constant
8(571220000) = (260)4.

6. The General Case

Proposition 6.1. Let M be any associative p× p magic square with magic constant m. Then
M2n+1 is magic with magic constant m2n+1, and M2n is semimagic.

Similar to the approaches taken in [7, 12, 25, 27] the proof involves matrix algebra and an
analysis of the eigenvalues of the various matrices, thus requiring a different approach than is
being emphasized here. Various examples of other matrices involving combinations of familiar
sequences as indicated in Section 3 will be addressed in a later paper.

7. Some Additional Comments

As indicated in the introduction, various magic configurations have been investigated and
the interested reader might want to check under “Magic Squares” in The Fibonacci Quarterly
Index [8] on the home page of The Fibonacci Association, and on the Wolfram MathWorld
Website with its sundry sources given there under “Magic Squares” [28, 29, 30]. The back-
ground and ideas at these sites should provide entertaining reading and possibly lead to further
research.
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An informative and entertaining place for the novice to start would be the chapters in Kelsey
[16]. Puzzles and various entertainments involving magic squares can be found in sources such
as [9, p. 119 ff.], [10, pp. 29–30, l49], and [22, pp. 47–56]. Approaches more appealing to the
professional mathematician can be found in Stark [24] who provides a theoretical approach to
magic squares and in Loly, Cameron, Trump and Schindel [18] who used linear algebra and
investigated the eigenvalues of magic squares.

Other related topics, to name a few, include a method for the construction of certain even
magic squares [23], the property of balanced magic squares [14], and multiplicative type magic
squares where the magic constant is determined, not from the row, column, and diagonal
sums, but from their products [30]. Note also that an excellent source of information on
various magic configurations, including a detailed analysis of Franklin magic squares, can be
found in [4] which has recently been reprinted.

Finally, as an entertaining aside, note that Albrecht Dürer, the magic square B1 and the
Franklin magic square all play a role in the Dan Brown novel, The Lost Symbol [5, pp. 256,
263 ff., 389].

8. Conclusion

Powers of several magic and semimagic squares have been computed and observations have
been made concerning the “magicness” of these powers. That is to say, are powers of magic
squares magic, semimagic, or neither? Many additional cases involving other sequences could
be investigated. An analysis of the existence or nonexistence of magic squares consisting of
only members of said sequences, similar to those made in [2, 6, 20, 21] could be addressed.
Also matrices similar to Freitag’s for other sequences might be possible to construct.

Finally, the authors wish to acknowledge the many comments, suggestions and additional
references provided by Curtis Cooper and the anonymous referee. These recommendations
greatly contributed to the improvement of the presentation of this paper.
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