PARTIAL SUMS OF GENERATING FUNCTIONS AS
POLYNOMIAL SEQUENCES

CLARK KIMBERLING

ABSTRACT. Partial sum polynomials are defined from a generating function. The generating
function and the partial sum polynomials of even degree can be represented as a certain kind
of linear combination of squares. Of particular interest are the coefficients by in such sums.
Examples of partial sum polynomials include Fibonacci polynomials of the 2nd kind, defined
by Pn(2) = 2% Pa_2(2) + 2Pa_1(2) + 1, with Po(z) = 1 and Pi(2) = 1 + z.

1. INTRODUCTION

Consider the generating function F(z) = (1 — z — 22)~! of the Fibonacci numbers:

F(z)=1+2+222+32" + 524 +8°+ ..., (1)
The partial sums of F(z) comprise the following sequence of polynomials:
n
Pu(2) =) Fpa* (2)
k=0
which satisfy the recurrence
Py =2"Pyg+ 2Py 1+ 1. (3)

For n > 0, we shall call P,, the nth Fibonacci polynomial of the 2nd kind. Much more generally,
an arbitrary generating function

f(2) =) axz" (4)
k=0
has partial sums which we shall call partial sum polynomials of f, (or of the sequence (ag, a1, a2, ...)):
po(2) = ag

pP1(2) = ap+ a1z

(2)
pa(2) = ap + arz + ag??
(2)

p3(2) = ag + a1z + az2® + agz®

and which have generating function
-
ft) (1 =1t)
If ag = 2 and a1 = 1, the polynomial p, will be called the nth Lucas polynomial of the 2nd

kind; these satisfy the recurrence P, = 22P,_9+ 2P_1 + 2. (Recall that the Fibonacci and
Lucas polynomials [of the 1st kind] are defined by the recurrence
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Pn = ZPn—-1+t pn-2, (5)
where pp = 1 and p; = z in the Fibonacci case, and pg = 2 and p; = z in the Lucas case.)

The purpose of this article is to present a few properties of generating function polynomials
P, With special attention to the Fibonacci and Lucas polynomials of the 2nd kind.

2. LINEAR COMBINATIONS OF SQUARES

The term “linear combination” is used here to apply to infinite sums as well as finite. We
shall show that a generating function (4), under certain mild conditions, is a linear combination
of squares, and that the same is true for polynomials of even degree.

Theorem 1. Let a = (ag,a1,a2,...) be a sequence of nonzero complex numbers, with gener-
ating function

f(2) =ap+ a1z + a2’ +---. (6)
Define bg = ag and cg = 2%, and assume that as # bocg, so that the number
0
2
a
bl:aQ_bOC%:aQ_Tblo
is not zero. Inductively, define
agy,_y 2
by = agk — b, 2k~ bk—1Ck—_1; (7)
k—1
a2k+1
%k = op, (8)
assuming at each stage that asy # bk,lci_l. Then
f(2) = bo(1 + coz)? + b122(1 4 c12)? + bpz (1 + c22)2 + - - - . 9)
Proof. Expand (9) and compare coefficients with (6). O

Clearly the series (9) has the same convergence interval as (6); for the special case (1), the
convergence interval is [1 — 7,7 — 1), where 7 = (1 ++/5)/2, the golden ratio.
We can also start with (9) and easily find that ag = bp and

agk+1 = 2bc, and a9k4+2 = bk+1 + bkcz (10)
for k > 0.
Example 1. Ifa=(1,2,3,4,...), then b(a) =a and c = (1,1,1,1,...).

As a second example in which the three sequences a,b,c are quite simple, we have the
following.

Example 2. Ifa=(1,1,1,1,...), then

k+2
2k +2

e
_|_
—_

by, =

and ¢

o
+
[\]

for k> 0.
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Theorem 2. In addition to the hypothesis of Theorem 1, suppose that the following limits
exist:
b
a= lim am+17 £ = lim mtl
m—00 m—ro0 bm

and that v # 0. Then 8 = o and v = «.

, v = lim ¢,
m—0o0

Proof. The equations (10), adapted as

ask = by + by_1¢5_1, agk+1 = 2bgCy, agkt2 = b1 + bpc},
imply
agk+1 2b.cy, and | 02R2 _ b1 + by
agk  br+by_1ci_, " agkt1 2bpck

so that

oo 2By _B+7

By 2y ]

so that 8 = a? and v = a. O

We turn now to an arbitrary even-degree polynomial
pon(2) = ap + a1z + asz® + - - + a9y 2°".
The method of Theorem 1 leads to the following linear combination of squares:
pan(2) = bo(1 + coz)2 + blz2(1 + 012)2 4+ bn_122"_2(1 + cn_12)2 + by 22", (11)
where the finite sequences b and ¢ are given by (7) and (8).

Example 3. Linear combinations of squares for three Fibonacci polynomials of the 2nd kind
are shown here:

Fy(z) = 1+ 2+ 222
= (1+32)% + 222
Fy(z) = 14+ 2+ 222 + 323 + 52*
= (1+12)? + 222(1 4 82)% + 224
Fo(z) = 1+ 2+22% +32% 4+ 52% +82° 41326
= (1432 + 222(1 4 82)% + 2241 + 2)? + 11226

3. THE CASE a = (z,y,z +y,x + 2y,...)

In this section we study the sequences b and ¢ when the given sequence is a generalized
Fibonacci sequence—that is, x and y are arbitrary positive numbers, and

ap=z, a1=y, aa=x+Yy, ..., ap=zxF_ 1+ yFg.

This sequence is the classical Fibonacci or Lucas sequence according as (x,y) = (1,1) or
(x,y) = (2,1). Of particular interest is the sequence by defined in Theorem 1, and I am
indebted to Paul Bruckman for an insightful proof of the convergence of by11/by in the case
(z,y) = (1,1). Bruckman’s method has served as a guide throughout this section. To begin,
define

a2k+1
d. =1— 12
k 1y (12a)
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for k£ > 0, and note that this definition yields the following recurrence for the sequence (d):

a2k+3
. 13
dagy + 4dpasgi1 (13)

1 —dgyy =

We shall need a few technical lemmas about Fibonacci numbers and their relation to the

golden ratio, given by

1+ \/5 . Fm+1
= lim

2 m—o00

T = .

m

It will be helpful (e.g., in Lemmas 3 and 5) to define a_; =y —x and a_y = 2z — y.

Lemma 1. Ifk > 0, then
Forqs + Fopy1 — 7Fok1 — 27Fo, > 0. (14)

Proof. Let a =7 and g =1—171. Let L, = o™ 4+ 8", the nth Lucas number. Since § < «, we

have

L2k+2 _ a2k+2 +l32k+2

a2k+1 + /3214:-0—1

> a,
Logy1

which implies (14) because L, = F;,—1 + Fip41 for m > 1. O
Lemma 2. Fork >0, let
Sk = 27Fop 1 — TFop — Fo, — Fopyo (15)
for k > 0. The sequence (sg) is strictly decreasing.
Proof. By Lemma 1,
0 > 7Fopq1 + 27Fo — Fopy1 — Fogqs
= 27541 + 27 Fo — TFoky1 — Fopy1 — Fopes
= 27 Fopyo — TFop+1 — Fop1 — Forys
= 27(Fakts — Fopy1) — T(Farro — Fox)
—(Fogq2 — For) — (Fopqa — Fopyo),
so that sg41 < sg. O
Lemma 3. Suppose that 0 <y < 71z and k > 0. Then
xFop o + yFopis
dxFop_1 +yFor) + (4 — 27)(wFo + yFory1)
Proof. 1t is easy to check that (16) holds for £k = 0. Assume that k¥ > 1. By Lemma 2, the

sequence (27 Fypq1 — TFo — Fo, — Fopy0) is a strictly decreasing sequence of positive numbers.
Consequently, for positive x and v,

< T/2. (16)

0 < (27 Fop1 — TFop — Fo, — Fogso) + y(27 Fopro — TFop1 — Fopn — Foggs),
from which easily follows
0 < x(47Fopq1 + 47 Foy — 272 Fyp — 2F;10)
+y(47 Fop g2 + 47 Fop1 — 272 Fop1 — 2Fok43),
whence
20 Fok o + 2yFokss < ATwFop_1 + 41y Fop, + (47 — 27°) (2 Fok + yFor+1),
so that (16) holds for k£ > 1. O
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Lemma 4. Suppose that 0 <y < 71z and k > 0. Then
1—7/2 < d. (17)

Proof. Clearly (17) holds for k = 0. Suppose for arbitrary £ > 0 that 1 — 7/2 < dj. Then
a2k+3

dagy + 4dyagyg 11

< A2k+3
= Adagg + 4(1 — 7/2)azk
< TFopt0 + yFopy3
= A(zFop—1 + yFax) + (4 = 27) (@ Fok + yFopi1)’

so that 1 — dg41 < 7/2 by Lemma 3. O

1 —dpr =

by the induction hypothesis

Lemma 5. If k > 0, then
Fopp1Fopya — FoproFops =1
A(Fopi1 Forss — Fopps + ForyaFons1 — FoproForys) + 3(FopraFor — Foj9) =5
Fop2Fopis — Fopy1 Fopra + 4(Forrs Forr1 — Fais) + 3(Fogs5 ok — Fop3Fopia) = —3
F3pis — Pop1 Foys = —1.
Proof. These identities are all easily proved by induction. ([
Lemma 6. Suppose that 0 <y < 7z, and for k > 0, let

22 Fopro + 2y Fok s
422 Fop1 + xy(4Fop41 + 3Fa) — y? Foga

The sequence (Gy) is strictly increasing.

Gr =

Proof. Suppose that k& > 0. The inequality Gy < Gpi1 to be proved is easily recast as
V —U > 0, where

U = (2% Fapya + 2y Forys)(42° Fopy3 + 2y(4Far 43 + 3For12) — v Fary3)

V = (2*Fapya + 2yFopis) (4a® Fop 1 + 2y(4Fos 1 + 3Fo) — y* Fopr1).
Expanding V — U and using identities in Lemma 5 gives

V —U = 4a* 4+ 523y — 32%y% — 2®
= (e +y)(xy + 2° —y?),
which is positive for 0 < y < 72. (]
Lemma 7. Suppose that 0 <y <7z and k > 0. Then
di < do. (18)
Proof. Clearly (18) holds for k = 0. Assume that (18) for arbitrary k£ > 0. Then
dad, <4z —y and  dyd, < 4y —y?/z,
so that
Ady (@ For, + yFors1) + (v /2) Farer < (42 — y) Foy + 4y Fornt
< dxFop + 4y (Fopy1 + 2F).
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Consequently,

dxFop 1 + 4y Fop, + 4dy (2 For + yFor11)
< AxFopir + y(AFoy1 + 3Fo) — (v2/2) Fag,
so that
rFopi2 + yFops
4 Fopy1 + y(4Forq1 + 3Fo) — (y2/2) Fopqa
< TFopi0 + yFops
4(xFopy1 + yFor) + 4dp(xFop + yFori1)’

which is to say that Gy <1 — dgy1. Therefore, by Lemma 6,
di+1 <1 = Go. (19)

Next, the obvious inequality
y(y — 2)? + 423 > 0
is equivalent to
4y(162° — 8zy + y?) + 16z(x — y) (4x — y) + 1622(2y — 3z) > 0,
so that

4(220) 2y + (4o — 4y) () + 2+ 2y — 4z > 0,
which is restated as
4diay + (4o — 4y)do + a3z — 4a > 0,

so that a
3
11— —— < dy,
4x + 4dpay 0
which is restated as
1—-Go < dyp. (20)

Inequalities (19) and (20) yield dg11 < do, so that by induction, (18) holds for all £ > 0. O
Lemma 8. If k > 0, then
Fop—3Fopt2 — Fop—1Fo =2 (
Fop—3Fojrs + For—oFopyo — Fop1 Fopy1 — Fip = 2 (
Fop—oFopt3 — FopFopiy = =2 (23
Fp = Fop—oFppio =1 (
285, Fop1 — Fop—oFoprs — Fop—1Fo2 =1 (
F3 i — Fop_1Fopyz3 = —1. (
Proof. These identities are all easily proved by induction. U
Lemma 9. Suppose that x > 0 and y > 0, and k > 0. Let
E=2"+tay—y°
Ey = agk—209k+3 — agka2k+1
Ey = a3j41 — Q2k—1a2k+3-
Then E1 =2F and By = E.
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Proof. When FEj is expanded using a,, = xFp,—1 + yF,, for the indicated subscripts m, the
result is the sum ¢122 + gy + g3y®> where g1, g2, and g3 are the numbers 2,2, —2 given in
(21)-(23). Likewise, Ey = qua? + g5y + qey® where qu, g5, and g are the numbers 1,1, —1
given in (24)-(26). O

Lemma 10. If0 < y < 7z, then the sequence (dy) is strictly decreasing.

Proof. Suppose k > 1. Using F; and Es as in Lemma 9, we find

dy — di41 By —dpEs + (dp—1 — di)asg—102k43
40 — di)(1 = dpyr) A2k+102k+3
_ (2—=dp)D + (dp—1 — dk)a2k—1a2k+3’ (27)
A2k+102k+3

where D = 2% + zy +y%. Since dy = 1 —y/(4x) < 1, we have dy < 1 and dj;1 < 1, by Lemma
7. Accordingly, (1 — dg)(1 —dg41) > 0 and 2 —di, > 0. As a first induction step, clearly
do > dy, and if dj_1 > dj, for arbitrary k, then (27) establishes that dy > dg1. O

Theorem 3. Suppose that 0 <y < 7x. Then

b1

kli_)rgodk =1-7/2 and klggo b 72,
Moreover,
gk < bry1 < ko (28)
for k> 0.

Proof. By Lemmas 4, 7, and 10, the sequence (dj) is bounded and strictly decreasing. There-
fore it converges. Let d = limy_, o di. By (13),

Forqo + yF2k+3

1—dgy = e = ’
A+ y 2 ) + ddy (a2 4y )
so that
14— 73 + y7'4
Az + yr) + 4d(zT + y72)
3
T At 4dr

which yields d =1 — 7/2. From (12a) we have

be+1  G2k43
- )
br a2k+1

so that

bky1 _ I TFopyo + yFo,  art + yr? _ 2

lim =
k—oco b k—oo xFoy + yFop_o x72 + Y

Next, (7) and (12a) give
bit1 = azpt2 — agk41(1 — di)
= agk + dpagp41,
so that (28) holds, since 0 < dj, < 1. O
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If a = (Fiq1), then Fopyq < bppqr < Fhpys for £ > 0, by Theorem 3. Experimentation
suggests a tighter upper bound, bi+1 < Laog+1, as well as the inequalities

2

T — m < bk+1/bk < T2
for k > 0.
If a = (Lok) then Loy < bry1 < Logio for k > 0, by Theorem 3, and experimentation

suggests that Fopio < b1 < Fopas for k > 2, and that

1
T2—%<bk+1/bk<7'2

for k£ > 1.
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