
EXTENSION OF THE GCD STAR OF DAVID THEOREM

TO MORE THAN TWO GCDS

CALVIN LONG AND EDWARD KORNTVED

Abstract. The GCD Star of David Theorem and the numerous papers related to it have
largely been devoted to showing the equality of the greatest common divisors of two sets of
elements formed by partitioning various arrays of binomial coefficients for any location of
these arrays in Pascal’s triangle. In this paper, we extend the study to arrays divided into n
subsets with n equal greatest common divisors for n = 2, 3, 4, 5, and ultimately, for arbitrary
n ≥ 2.

1. Introduction

The genesis of Gould’s Star of David Conjecture [3], first proved by Hillman and Hoggatt
[4], was a paper by Hoggatt and Hansell [5] showing that the product of the six binomial
coefficients surrounding any given entry in Pascal’s triangle is a perfect square. Equivalently,
if one numbers consecutively the six entries forming a “hexagon” around any given entry,
the product of the even numbered entries equals the product of the odd numbered entries.
In addition to Gould’s conjecture, Hoggatt and Hansell’s paper sparked a number of papers
[2, 7, 8, 10, 11] on perfect square and equal product patterns in Pascal’s triangle.

The starting point from the present paper is the paper by Usiskin [11] in which he showed
that the product of the a’s equals the product of the b’s equals the product of the c’s for the
three-diamond array of binomial coefficients shown in Figure 1 for any location of the array
in Pascal’s triangle.

a

b c

c a b

b c

a

b

c a

a b c

c a

b

c

a b

b c a

a b

c

Figure 1.

Now, as Gould was led to conjecture the original GCD Star of David Theorem by considering
the paper by Hoggatt and Hansell, we show here that gcd (Sa) = gcd (Sb) = gcd (Sc) where
Sa, Sb, and Sc are the sets of a’s, b’s, and c’s in Figure 1 and gcd (St) denotes the greatest
common divisor of the elements in St for t = a, b, or c. In fact, similar results can be obtained
for n n-by-n diamonds for n = 2, 3, 4, and 5 and we conjecture that similar results hold for all
greater values of n. In the last section we show how to construct arbitrarily large triangular
arrays that can be partitioned into n subsets with equal GCDs for arbitrary n ≥ 2.

The proofs of all these results depend on the following easily proved lemmas [1, 9].
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Lemma 1. For the three arrays shown, if x, y, and z are adjacent coefficients anywhere in
Pascal’s triangle,
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then gcd (x, y) = gcd (x, y, z).

Lemma 2. For the two arrays shown, if x, y, z, and w are coefficients anywhere in Pascal’s
triangle
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with x, y, and z adjacent to w, then gcd (x, y, z) = gcd (x, y, z, w).

2. Results for Diamonds

We first consider Usiskin’s array of Figure 1.

Theorem 1. For any location of the array of coefficients in Figure 1 in Pascal’s triangle,

gcd (Sa) = gcd (Sb) = gcd (Sc) .

Proof. We first number the entries in Figure 1 as shown in Figure 2.
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Figure 2.

Let d = gcd (Sa), e = gcd (Sb), and f = gcd (Sc). Since d | ai for 1 ≤ i ≤ 9, repeated use of
Lemma 1 and Lemma 2 show that d | c8, d | b7, d | b9, d | c9, d | b8, d | w, d | c5, d | b5, d | c4,
d | c6, d | t, d | c1, d | r, d | s, d | b4, d | u, d | v, d | c7, d | b2, d | b1, d | c3, d | b3, d | b6, and
d | c2. Therefore, d | e and d | f . Similarly, one shows that e | d and e | f and also that f | d
and f | e. Thus, d = e = f as claimed. �

Results entirely analogous to Theorem 1 but for n = 2, 4, and 5 can all be proved using
only Lemma 1 and Lemma 2. The challenge in each case, of course, is to partition the array
under consideration into subsets for which the greatest common divisors are indeed equal.
Also, we note that we were unable to get similar results for n diamonds with n ≥ 6 though we
have little doubt that such results are true for arbitrary n. Interested readers can contact the
authors for suitable partitions for n = 2, 4, and 5.
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3. Results for Triangles of Least Support

It is interesting to note that Lemma 1 and Lemma 2 immediately allow for the extension of
Theorem 1 to what might be called the equilateral triangle of least support of an array; i.e.,
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the smallest equilateral triangle containing the array in question where the top side is along a
row of Pascal’s triangle and whose other two sides are along main diagonals as shown for the
two diamonds in the figure which is the two diamond analogue of Figure 1.

Also note that each dot in the figure can be replaced by either a or b without changing
the final result. Further, we observe that Lemma 1 and Lemma 2 allow the extension of all
theorems in the existing literature showing equal GCDs to be extended to solid triangles of
least support for the arrays in question where, again, the added coefficients can be allocated
to any of the subsets into which the array in question was originally divided without altering
the result.

4. A General Construction for Arbitrarily Many GCDs

For arbitrary n ≥ 2, we give a construction for arbitrarily large triangular sets of binomial
coefficients that can be partitioned into subsets Si, 1 ≤ i ≤ n, with the property that gcd (Si) =
gcd (Sj) for 1 ≤ i < j ≤ n for any positioning of the constructed set in Pascal’s triangle. The
construction is completely general and could be given a general proof. However, to conserve
space, we consider only the case n = 4.

Consider the array of coefficients shown in Figure 3.

9

98

987

9876

98765

987654

9876543

98765432

987654321

a

dc

bad

adcb

cbadc

badcba

dcbadcb

cbadcbad

adcbadcba

′′
′′

′′′
′′′′

′′′′′

Figure 3.

Theorem 2. For the array of Figure 3, and any triangular array obtained from it by extending
the pattern arbitrarily far to the right, located anywhere in Pascal’s triangle,

gcd (Sa) = gcd (Sb) = gcd (Sc) = gcd (Sd) .
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Proof. Let d = gcd (Sa), e = gcd (Sb), f = gcd (Sc), and g = gcd (Sd). First consider d. As
argued earlier, Lemma 1 and Lemma 2 suffice to show that d divides all the elements in the
equilateral triangle of coefficients of least support containing a5, a6, and a′7. Moreover, it is
clear that an element of Sa must appear at least once in the array among the top five elements
of each diagonal in the array sloping downward and to the left from the fifth on. So, by Lemma
1, d divides every element in the top five rows of the entire array and hence in the entire array
and any extension to the right, if any. Thus, d | e, d | f , and d | g. Similarly, e divides all
coefficients in the triangle of least support containing b2, b3, and b4. Hence, as for d, e divides
every element in the array and e | d, e | f , and e | g. Since a similar argument holds for both
f and g, it follows that d = e = f = g as claimed. �

Observe that as noted in the proof of Theorem 2, the array in Figure 3 can be extended
arbitrarily far to the right subject to the condition that an element of each of Sa, Sb, Sc, and
Sd appear among the top four elements in each succeeding diagonal sloping downward and
to the left. Moreover, except for c′5, d

′
6, and a′7, the elements in the bottom five rows of the

triangle can be completely arbitrarily chosen from among Sa, Sb, Sc, and Sd without affecting
the validity of the result. Of course, a similar situation prevails for all other values of n as
well.
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