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Abstract. The Fibonacci identity

F 4
n − F 4

n+1 − 10F 4
n+2 − F 4

n+3 + F 4
n+4 = 6F 2

2n+4

belongs to a family of identities where each identity contains only one product on the right
side. In this paper we give this family together with two other such families. We also state
two conjectures that give the form of similar identities. Finally, we give the expansions of
L2m

n and F 2m
n in terms of Lucas numbers with even subscripts.

1. Introduction

In [4] we presented the following identities:

F 4
n + 4F 4

n+1 + 4F 4
n+2 + F 4

n+3 = 6F 2
2n+3, (1.1)

F 4
n − 6F 4

n+2 − 6F 4
n+4 + F 4

n+6 = 56F 2
2n+6 + 20, (1.2)

F 4
n + 19F 4

n+3 + 19F 4
n+6 + F 4

n+9 = 1224F 2
2n+9 − 480, (1.3)

and
F 4
n − 46F 4

n+4 − 46F 4
n+8 + F 4

n+12 = 20304F 2
2n+12 + 8100. (1.4)

We then proved the following theorem which has (1.1)-(1.4) as special cases.

Theorem 1.1. Let n and k be integers. Then

F 4
n+
(
(−1)k+1L2k + 1

)
F 4
n+k +

(
(−1)k+1L2k + 1

)
F 4
n+2k + F 4

n+3k (1.5)

= FkL2kF3kF
2
2n+3k + 10(−1)kFk−1F

4
kFk+1.

In [4] we presented two further theorems that are analogous to Theorem 1.1 and gave two
conjectures that describe the general form of similar results.

Upon further investigation, we found that there is an abundance of similar families of
identities with only one product on the right side. In this paper we present a selection of
such identities. For larger powers such identities become unwieldy. Consequently, to conserve
space, we present only identities where the coefficients on the left display symmetry. Our aim
here is to present some relatively simple cases in order to highlight the form of such identities.
Furthermore, we give two conjectures that describe the general form of similar identities.

2. Three Families of Identities

Consider the identities

F 4
n − F 4

n+1 − 10F 4
n+2 − F 4

n+3 + F 4
n+4 = 6F 2

2n+4, (2.1)

−F 4
n + 81F 4

n+2 − 520F 4
n+4 + 81F 4

n+6 − F 4
n+8 = 216F 2

2n+8, (2.2)
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and

F 4
n − 256F 4

n+3 − 4930F 4
n+6 − 256F 4

n+9 + F 4
n+12 = 3264F 2

2n+12. (2.3)

To obtain (2.1)-(2.3) we assumed the existence of identities of the required form and, upon
substituting several values of n, solved the resulting equations to obtain the coefficients. After
considering several more such identities we obtained a general result that includes (2.1)-(2.3)
as special cases. This result is contained in our first theorem.

Theorem 2.1. Let n and k be integers. Then

(−1)k+1FkF
4
n + (−1)kL3

kF2kF
4
n+k − F3k

(
L4k + 2(−1)kL2k + 4

)
F 4
n+2k

+ (−1)kL3
kF2kF

4
n+3k + (−1)k+1FkF

4
n+4k = 3F 2

2kF3kF
2
2n+4k.

(2.4)

In (2.4) the discovery of the coefficient of F 4
n+2k was made easy when we sought an expansion

in terms of Lucas numbers that have even subscripts. This idea was pivotal in our discovery
of the lengthier identities that we present here.

In order to conveniently state our next theorem, we define coefficients ai = ai(k) as follows:

a0 = (−1)k+1a5 = (−1)k
(
L2k + 3(−1)k

)
;

a1 = (−1)k+1a4 = (−1)k+1
(
L8k + 4(−1)kL6k + 9L4k + 12(−1)kL2k + 13

)
;

a2 = (−1)k+1a3 = L2k

(
L10k + 3(−1)kL8k + 6L6k + 11(−1)kL4k + 14L2k + 15(−1)k

)
.

We are now able to state our second theorem.

Theorem 2.2. Let n and k be integers, and let ai, 0 ≤ i ≤ 5, be as defined above. Then

5∑
i=0

aiF
6
n+ik = 5LkF3kF4kF5kF

3
2n+5k. (2.5)

For our third theorem we define coefficients ai = ai(k) as

a0 = a8 = F 2
k

(
3L8k + 10(−1)kL6k + 23L4k + 38(−1)kL2k + 48

)
;

a1 = a7 = −LkF2kL3kF4k

(
3L8k + 4(−1)kL6k + 12L4k + 12(−1)kL2k + 22

)
;

a2 = a6 = (−1)kFkL
2
2kF7k

(
3L12k + 10(−1)kL10k + 25L8k + 50(−1)kL6k

+ 81L4k + 108(−1)kL2k + 122
)
;

a3 = a5 = (−1)k+1L2
kL3kF4kF7k

(
3L12k + 6(−1)kL10k + 13L8k + 18(−1)kL6k

+ 29L4k + 32(−1)kL2k + 42
)
;

a4 = F5kF7k

(
3L18k + 9(−1)kL16k + 24L14k + 47(−1)kL12k

+ 83L10k + 126(−1)kL8k + 179L6k + 227(−1)kL4k

+ 263L2k + 262(−1)k
)
.
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Theorem 2.3. Let n and k be integers, and let ai, 0 ≤ i ≤ 8, be as defined above. Then

8∑
i=0

aiF
8
n+ik = 35LkF3kF

2
4kF5kF6kF7kF

4
2n+8k. (2.6)

3. Conjectures Concerning Further Identities

As we stated in the introduction, we have confined our investigation to identities in which
the coefficients on the left display symmetry. Our investigations have led to two conjectures
concerning the existence of such identities. In the statement of these conjectures the “symme-
try” to which we have alluded will be made precise.

Conjecture 3.1. Let p > 0 be an even integer, and let m > 1 and k be integers. Then there
exist integers ai = ai(p,m, k), 0 ≤ i ≤ mp, and an integer b = b(p,m, k) such that

mp∑
i=0

ai(k)F
mp
n+ik = bF p

mn+pm2k/2
. (3.1)

Furthermore, for 0 ≤ i ≤ mp/2− 1, we have ai = amp−i.

Conjecture 3.2. Let p > 1 be an odd integer, and let m > 1 and k be integers. Then there
exist integers ai = ai(p,m, k), 0 ≤ i ≤ mp− 1, and an integer b = b(p,m, k) such that

mp−1∑
i=0

ai(k)F
mp
n+ik = bF p

mn+m(pm−1)k/2. (3.2)

Furthermore, for 0 ≤ i ≤ ⌊mp/2⌋ − 1, we have

ai =

{
−amp−1−i, if m ≡ 0 (mod 4);

(−1)⌊mp/2⌋(k+m−1)+ikmamp−1−i, if m ̸≡ 0 (mod 4).

In Conjectures 3.1 and 3.2 the case where k = 0 is the trivial case in which all coefficients
are zero. In Conjecture 3.2 the symmetry condition on the ai was not easily forthcoming.

In order to illustrate Conjectures 3.1 and 3.2, we present two instances of each.
For (p,m, k) = (2, 3, 1) an instance of Conjecture 3.1 is

F 6
n − 6F 6

n+1 − 58F 6
n+2 + 198F 6

n+3 − 58F 6
n+4 − 6F 6

n+5 + F 6
n+6 = 120F 2

3n+9. (3.3)

For (p,m, k) = (4, 2, 1) another instance of Conjecture 3.1 is

14F 8
n − 417F 8

n+1 − 10998F 8
n+2 + 25896F 8

n+3 + 146510F 8
n+4 + 25896F 8

n+5

− 10998F 8
n+6 − 417F 8

n+7 + 14F 8
n+8 = 81900F 4

2n+8.
(3.4)

For (p,m, k) = (3, 3, 1) an instance of Conjecture 3.2 is

− 7F 9
n − 477F 9

n+1 + 12519F 9
n+2 + 204516F 9

n+3 + 165100F 9
n+4 − 204516F 9

n+5

+ 12519F 9
n+6 + 477F 9

n+7 − 7F 9
n+8 = 262080F 3

3n+12.
(3.5)

For (p,m, k) = (3, 2, 2) another instance of Conjecture 3.2 is

2F 6
n − 803F 6

n+2 + 34034F 6
n+4 − 34034F 6

n+6 + 803F 6
n+8 − 2F 6

n+10 = 27720F 3
2n+10. (3.6)

We invite the reader to check the validity of (3.3)-(3.6), and to also check that in each case
the stated symmetry conditions on the ai are satisfied.
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In fact, identity (2.4) is a family of identities with (p,m) = (2, 2), and each identity in
this family is an instance of Conjecture 3.1. Likewise, (2.5) is a family of identities in which
each identity is an instance of Conjecture 3.2, and (2.6) is a family of identities in which each
identity is an instance of Conjecture 3.1.

4. A Sample Proof

Each result in this paper can be proved with the use of a method introduced by Dresel [1].
To illustrate, we prove Theorem 2.1.

In the terminology of Dresel, (2.4) is homogeneous of degree 4 in the variable n. Next we
look at the variable k. As Dresel explains, since (−1)k = (αβ)k, where α and β are the roots
of x2 − x− 1 = 0, then (−1)k is of degree 2 in the variable k. Accordingly, into certain terms
of (2.4) we insert appropriate powers of (−1)k in order to make (2.4) homogeneous of degree
19 in the variable k. For instance, we write the first terms on the left as (−1)9k+1FkF

4
n , and

the middle term on the left as −F3k

(
(−1)2kL4k + 2(−1)3kL2k + 4(−1)4k

)
F 4
n+2k.

We noted above that (2.4) is homogeneous of degree 4 in the variable n. Therefore, to
prove (2.4) with the Verification Theorem of Dresel [1, page 171], we need only verify its
validity for five distinct values of n. Accordingly, we write down the cases that correspond to
n = 1, 2, 3, 4, and 5. We are required to prove each of these five cases. Now, each of these five
cases is an identity that is homogeneous of degree 19 in the variable k. Therefore, to prove
any one of these five cases, we need only verify its validity for twenty distinct values of k; say
k = 1, 2, . . . , 20. We are required to verify (2.4) for 5 × 20 distinct ordered pairs (n, k). We
managed to perform these verifications and thereby complete the proof of Theorem 2.1 in a
matter of seconds with the use of the computer algebra system Mathematica 6.0.

5. Certain Expansions in Terms of Lucas Numbers

Our discovery of (2.4)-(2.6) became routine when we realized that factors of some coefficients
could be expanded in terms of Lucas numbers with even subscripts. This prompted us to
search for Fibonacci/Lucas expressions that have such expansions. The most interesting such
expansions that we found are the expansions of L2m

n and F 2m
n . To establish these expansions,

we require the three preliminary results that follow.

5F 2
n = L2

n + 4(−1)n+1, (5.1)

m∑
k=0

(−1)k4m−k

(
m

k

)(
2k

k

)
=

(
2m

m

)
, (5.2)

and
m∑
k=i

(−1)k4m−k

(
m

k

)(
2k

k − i

)
= (−1)i

(
2m

m− i

)
. (5.3)

Identity (5.1) occurs as I12 on page 56 of [3]. Identity (5.2) occurs as (3.85) in [2]. Fur-
thermore, identity (5.2) is proved by two different methods in [5], see pages 116 and 123.
Identity (5.3) is a generalization of identity (5.2). However, since we have not cited (5.3) in
the literature available to us, we present a short proof.

To prove (5.3) we use the method of WZ pairs as described in Wilf [5, pp 120-126]. In the
terminology of Wilf, identity (5.3) is certified by the rational function

R (m, k) =
2k − 1

2m+ 1
,
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a fact that can be verified with Gosper’s algorithm.
We designate the expansion of L2m

n as a lemma, and the expansion of F 2m
n as a theorem.

Lemma 5.1. Let m be a positive integer. Then

L2m
n =

m∑
i=0

(
2m

m− i

)
(−1)(m−i)nL2in + (−1)mn+1

(
2m

m

)
. (5.4)

The proof of Lemma 5.1 is immediate if we take the binet form of Ln and expand L2m
n . We

leave the details to the reader.

Theorem 5.2. Let m be a positive integer. Then

5mF 2m
n =

m∑
i=1

(−1)(m+i)(n+1)

(
2m

m− i

)
L2in + (−1)m(n+1)

(
2m

m

)
. (5.5)

Proof. From (5.1) and the binomial theorem we obtain

5mF 2m
n =

m∑
k=0

(
m

k

)
L2k
n (−1)(n+1)(m−k)4m−k. (5.6)

In (5.6) we substitute the right side of (5.4) for L2k
n to obtain a double sum. In this double

sum we reverse the order of summation to obtain

5mF 2m
n = (−1)m(n+1)

(
m∑
i=1

(−1)inL2in

m∑
k=i

(−1)k4m−k

(
m

k

)(
2k

k − i

)

+

m∑
k=0

(−1)k4m−k

(
m

k

)(
2k

k

))
.

(5.7)

Theorem 5.2 now follows from (5.2) and (5.3). �
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