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Abstract. We show that integral lens sequences can be factorized, thereby proving a con-
jecture of J. Kocik.

1. Introduction

Kocik [1] introduced the idea of a lens sequence. Two congruent circles overlap, thus
forming a lens. With the common chord as axis, one can inscribe a sequence of circles in
the lens centered on the axis, each tangent to the previous circle in the sequence and to the
two original circles. Each of the circles in the sequence has a curvature (the reciprocal of its
radius), bn, and {bn} is the sequence appropriately called a lens sequence.

A lens sequence is given by b0 = a, b1 = b, b2 = c and, for all n,

bn−1 − αbn + bn+1 + β = 0, (1.1)

where

α =
ab+ bc+ ca

b2
− 1 and β =

ac− b2

b
.

The most interesting case occurs when a, b, c, α and β are all integers, for then {bn} is a
bilateral sequence of integers. We give two examples:
(1) (a, b, c, α, β) = (2, 3, 6, 3, 1)

bn−1 − 3bn + bn+1 + 1 = 0,

{bn} = { · · · , 6, 3, 2, 2, 3, 6, 14, 35, 90, · · · }
and
(2) (a, b, c, α, β) = (12, 20, 55, 4, 13),

bn−1 − 4bn + bn+1 + 13 = 0,

{bn} = { · · · , 112, 35, 15, 12, 20, 55, 187, 680, 2520, · · · }.
Kocik noticed that in these, and indeed in every example he studied, the lens sequence can

be factorized in the following way.
In example (1),

{bn} = { · · · , 2× 3, 3× 1, 1 × 2, 2× 1, 1× 3, 3 × 2, 2× 7, 7 × 5, 5× 18, · · · },
bn = fnfn+1 where {fn} = { · · · , 2, 3, 1, 2, 1, 3, 2, 7, 5, 18, · · · }

and {fn} satisfies the homogeneous recurrences

fn−1 − fn + fn+1 = 0, if n even,

fn−1 − 5fn + fn+1 = 0, if n odd,
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while in example (2),

{bn} = { · · · , 16× 7, 7 × 5, 5 × 3, 3× 4, 4 × 5, 5× 11, 11 × 17, 17 × 40, 40 × 63, · · · },
bn = fnfn+1 where {fn} = { · · · , 16.7, 5, 3, 4, 5, 11, 17, 40, 63, · · · }

and

fn−1 − 3fn + fn+1 = 0 if n even,

fn−1 − 2fn + fn+1 = 0 if n odd.

We shall prove the following theorem.

Theorem 1.1. For an integer lens sequence (as defined above) we have

bn = fnfn+1

where {fn} is an integer sequence satisfying

fn−1 −
f1 + f3

f2
fn + fn+1 = 0 if n even, (1.2)

fn−1 −
f0 + f2

f1
fn + fn+1 = 0 if n odd.

2. The Proof

Proof. Given that b and β =
ac− b2

b
are integers, it follows that

ac

b
is an integer. We can

write b = d1d2 where d1|a, d2|c.
Let f0 =

a

d1
, f1 = d1, f2 = d2, f3 =

c

d2
. Then f0, f1, f2, and f3 are all integers. Define the

sequence {fn} for all n by
fn−2 − αfn + fn+2 = 0.

Then {fn} is a sequence of integers.
We solve this recurrence explicitly. First suppose α 6= 2. The characteristic polynomial of

the recurrence is

x4 − αx2 + 1 = (x2 − λ)(x2 − µ) = (x− γ)(x+ γ)(x− δ)(x+ δ)

where

λ =
α+

√
α2 − 4

2
, µ =

α−
√
α2 − 4

2
,

γ =

√
α+ 2 +

√
α− 2

2
, δ =

√
α+ 2−

√
α− 2

2
.

It follows that
fn = Aγn +Bδn + C(−γ)n +D(−δ)n, (2.1)

where A, B, C, and D are determined from

A+B + C +D = f0,

Aγ +Bδ − Cγ −Dδ = f1,

Aγ2 +Bδ2 + Cγ2 +Dδ2 = f2,

Aγ3 +Bδ3 − Cγ3 −Dδ3 = f3.
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We find that

A =
1

2(γ2 − δ2)

(

−δ2f0 − δ3f1 + f2 + δf3
)

, (2.2)

B =
1

2(γ2 − δ2)

(

γ2f0 + γ3f1 − f2 − γf3
)

,

C =
1

2(γ2 − δ2)

(

−δ2f0 + δ3f1 + f2 − δf3
)

,

D =
1

2(γ2 − δ2)

(

γ2f0 − γ3f1 − f2 + γf3
)

.

We now calculate fnfn+1.

fnfn+1 = (Aγn +Bδn +C(−γ)n +D(−δ)n)

× (Aγn+1 +Bδn+1 + C(−γ)n+1 +D(−δ)n+1)

= (A2 − C2)γ2n+1 + (B2 −D2)δ2n+1 + (AB − CD)(γ + δ)

+ (AD −BC)(γ − δ)(−1)n

= (A2 − C2)γλn + (B2 −D2)δµn + (AB − CD)(γ + δ) (2.3)

+ (AD −BC)(γ − δ)(−1)n

where we have used the fact that γ2 = λ, δ2 = µ, and γδ = 1.
On the other hand, the solution to the non-homogeneous equation for bn is easily found to

be

bn = a

(

λµn − µλn

λ− µ

)

+ b

(

λn − µn

λ− µ

)

− β

α− 2

(

λµn − µλn

λ− µ
+

λn − µn

λ− µ
− 1

)

(2.4)

=

(

a− β

α− 2

)(

λµn − µλn

λ− µ

)

+

(

b− β

α− 2

)(

λn − µn

λ− µ

)

+
β

α− 2

=
1

λ− µ

(

−µa+ b+ (µ − 1)
β

α − 2

)

λn +
1

λ− µ

(

λa− b+ (−λ+ 1)
β

α− 2

)

µn +
β

α− 2
.

From (2.2) it follows routinely that

AD −BC = 0, (2.5)

(AB − CD)(γ + δ) =
β

α− 2
,

(A2 − C2)γ =
1

λ− µ

(

−µa+ b+ (µ− 1)
β

α− 2

)

,

(B2 −D2)δ =
1

λ− µ

(

λa− b+ (−λ+ 1)
β

α − 2

)

,

(the details are left to the reader) and hence,

bn = fnfn+1.
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Next, from (2.1) we have

f2n+1 = (A− C)γ2n+1 + (B −D)δ2n+1, (2.6)

f2n = (A+ C)γ2n + (B +D)δ2n,

f2n−1 = (A− C)γ2n−1 + (B −D)δ2n−1.

Again from (2.2) it follows routinely that

(A− C)(γ + δ) =
f1 + f3

f2
(A+ C),

(B −D)(γ + δ) =
f1 + f3

f2
(B +D),

and hence,

f2n−1 + f2n+1 =
f1 + f3

f2
f2n. (2.7)

Similarly from (2.1),

f2n+2 = (A+ C)γ2n+2 + (B +D)δ2n+2, (2.8)

f2n+1 = (A− C)γ2n+1 + (B −D)δ2n+1,

f2n = (A+ C)γ2n + (B +D)δ2n,

it follows from (2.2) that

(A+ C)(γ + δ) =
f0 + f2

f1
(A− C), (2.9)

(B +D)(γ + δ) =
f0 + f2

f1
(B −D)

and hence,

f2n + f2n+2 =
f0 + f2

f1
f2n+1, (2.10)

and the proof is complete in the case α 6= 2.
Now suppose α = 2. The characteristic polynomial of the recurrence is

x4 − 2x2 + 1 = (x− 1)2(x+ 1)2,

and it follows that

fn = (An +B) + (Cn+D)(−1)n, (2.11)

where A, B, C, and D are determined from

B +D = f0,

A+B − C −D = f1,

2A+B + 2C +D = f2,

3A+B − 3C −D = f3.
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We find that

A =
1

4
(−f0 − f1 + f2 + f3), (2.12)

B =
1

4
(2f0 + 3f1 − f3),

C =
1

4
(−f0 + f1 + f2 − f3),

D =
1

4
(2f0 − 3f1 + f3),

and

fnfn+1 = (An+B + Cn(−1)n +D(−1)n)

× (An+ (A+B) + Cn(−1)n + (C +D)(−1)n)

= (A2 − C2)n2 + (A2 + 2AB − C2 − 2CD)n (2.13)

+ (AB +B2 − CD −D2) + (AD −BC)(−1)n.

On the other hand,

bn = −β

2
n2 +

(

−a+ b+
β

2

)

n+ a. (2.14)

From (2.12) it follows that

AD −BC = 0, (2.15)

AB +B2 − CD −D2 = a,

A2 − C2 = −β

2
,

AB − CD =
1

2
(−a+ b+ β)

and hence,

bn = fnfn+1.

Next, from (2.11) we have

f2n+1 = (2A− 2C)n+ (A+B − C −D), (2.16)

f2n = (2A+ 2C)n+ (B +D),

f2n−1 = (2A− 2C)n+ (−A+B + C −D).

From (2.12) it follows that

4A− 4C =
f1 + f3

f2
(2A+ 2C),

2B − 2D =
f1 + f3

f2
(B +D),

and hence,

f2n−1 + f2n+1 =
f1 + f3

f2
f2n. (2.17)
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Similarly,

f2n+2 = (2A+ 2C)n+ (2A+B + 2C +D), (2.18)

f2n+1 = (2A− 2C)n+ (A+B − C −D),

f2n = (2A+ 2C)n+ (B +D),

from (2.12),

4A+ 4C =
f0 + f2

f1
(2A− 2C), (2.19)

2A+ 2B + 2C + 2D =
f0 + f2

f1
(A+B − C −D),

and

f2n + f2n+2 =
f0 + f2

f1
f2n+1, (2.20)

and the proof is complete. �
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