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Abstract. Zeckendorf proved that every positive integer has a unique representation as a
sum of non-consecutive Fibonacci numbers. Once this has been shown, it’s natural to ask how
many summands are needed. Using a continued fraction approach, Lekkerkerker proved that
the average number of such summands needed for integers in [Fn, Fn+1) is n/(α

2 +1)+O(1),

where Fn is the nth Fibonacci number and α = 1+
√

5

2
is the golden mean. Surprisingly, no

one appears to have investigated the distribution of the number of summands; our main result
is that this converges to a Gaussian as n → ∞. Moreover, such a result holds not just for
the Fibonacci numbers but many other problems, such as linear recurrence relations with
non-negative integer coefficients (which is a generalization of base B expansions of numbers)
and far-difference representations.

In general, the proofs involve adopting a combinatorial viewpoint and analyzing the re-
sulting generating functions through partial fraction expansions and differentiating identities.
The resulting arguments become quite technical. The purpose of this paper is to concentrate
on the special and most interesting case of the Fibonacci numbers, where the obstructions
vanish and the proofs follow from some combinatorics and Stirling’s formula; see [13] for
proofs in the general case.

1. Introduction

Fibonacci numbers are one of the most well-known and studied sequences in mathematics,
as well as one of the most enjoyable to play with. There are books, journals and conferences
dedicated to all their wondrous properties. The purpose of this article is to review two nice
results, namely Zeckendorf’s and Lekkerkerker’s Theorems, and discuss generalizations and
related questions. We provide complete proofs for the Fibonacci sequence and refer the reader
to [13] for proofs of the general cases.

Before stating our results, we first set some notation. We study the (shifted) Fibonacci
sequence given by F1 = 1, F2 = 2, F3 = 3, F4 = 5 and in general Fn = Fn−1 + Fn−2. Note
our sequence is offset from the standard Fibonacci sequence {Fn} by 1, with Fn = Fn+1. The
nth term in the sequence is given by the (shifted) Binet’s formula

Fn =
α√
5
· αn − 1− α√

n
· (1− α)n, α =

1 +
√
5

2
, (1.1)

where α is the golden mean. We will see below why it is convenient to study the shifted
sequence. We refer to the elements {Fn} as (shifted) Fibonacci numbers.
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Zeckendorf (see for instance [16]) proved that every positive integer can be written uniquely
as a sum of non-adjacent (shifted) Fibonacci numbers. The proof is a straightforward induc-
tion. Note, though, how important it is that our series begins with just a single 1; if we had
two 1’s then the decompositions of many numbers into non-adjacent summands would not be
unique.

In the 1950’s, Lekkerkerker [10] answered the following question, which is a natural out-
growth of Zeckendorf’s theorem: On average, how many summands are needed in the Zeck-
endorf decomposition? Lekkerkerker proved that for integers in [Fn,Fn+1) the average number
of summands, as n → ∞, is n

α2+1 +O(1) ≈ .276n.
Of course, one can ask these questions for more general recurrence relations. Zeckendorf’s

result has been generalized to several recurrence relations (see the 1972 special volume on
representations in the Fibonacci Quarterly, especially [6, 7], as well as [11]). Burger [2] proved
the analogous result for the mean number of summands for a generalization of Fibonacci
numbers, Gn = Gn−1 +Gn−2 + · · ·+Gn−L. There is, of course, another generalization, which
interestingly does not seem to have been asked. Namely, how are the number of summands
distributed about the mean for integers in [Fn,Fn+1). This is a very natural question to ask.
Both the question and the answer are reminiscent of the Erdős-Kac Theorem [4], which states
that as n → ∞ the number of distinct prime divisors of integers on the order of size n tends
to a Gaussian with mean log log n and standard deviation

√
log log n. (In [13], a companion

paper to this work, we show a connection between our result and the Erdős-Kac Theorem for
recurrence relations of depth 1.)

Our main result is that a similar statement about Gaussian behavior holds, not just for the
shifted Fibonacci numbers, but for the large class of recurrence relations (which includes the
Fibonacci numbers as a special case) defined below.

Definition 1.1. We say a sequence {Hn}∞n=1 of positive integers is a Positive Linear Recur-
rence Sequence (PLRS) if the following properties hold:

(1) Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L,

with L, c1 and cL positive.
(2) Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · · + cnH1 + 1.

We call a decomposition
∑m

i=1 aiHm+1−i of a positive integer N (and the sequence {ai}mi=1)
legal if a1 > 0, the other ai ≥ 0, and one of the following two conditions hold:

• We have m < L and ai = ci for 1 ≤ i ≤ m.
• There exists s ∈ {0, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs, (1.2)

as+1, . . . , as+` = 0 for some ` ≥ 0, and {bi}m−s−`
i=1 (with bi = as+`+i) is legal.

If
∑m

i=1 aiHm+1−i is a legal decomposition of N , we define the number of summands (of this
decomposition of N) to be a1 + · · ·+ am.

Informally, a legal decomposition is one where we cannot use the recurrence relation to
replace a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded. For example, if Hn+1 = 2Hn + 3Hn−1 + Hn−2, then
H5+2H4+3H3+H1 is legal, while H5+2H4+3H3+H2 is not (we can replace 2H4+3H3+H2
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with H5), nor is 7H5 + 2H2 (as the coefficient of H5 is too large). Note the shifted Fibonacci
numbers are just the special case of L = 2 and c1 = c2 = 1.

We adopt a probabilistic language to state our main results.

Definition 1.2 (Associated Probability Space to a Positive Linear Recurrence Sequence). Let
{Hn} be a Positive Linear Recurrence Sequence. For each n, consider the discrete outcome
space

Ωn = {Hn, Hn + 1, Hn + 2, . . . , Hn+1 − 1} (1.3)

with probability measure

Pn(A) =
∑

ω∈A

ω∈Ωn

1

Hn+1 −Hn
, a ⊂ Ωn; (1.4)

in other words, each of the Hn+1 − Hn numbers is weighted equally. We define the random
variable Kn by setting Kn(ω) equal to the number of summands of ω ∈ Ωn in its legal decompo-
sition. It is also convenient to study Kn = Kn − 1; every integer in Ωn must have at least one
Hn as a summand; thus Kn is the number of non-forced summands in a legal decomposition.

Implicit in this definition is that each integer has a unique legal decomposition; we will
prove this fact, and thus Kn is well-defined. Our main result is the following theorem.

Theorem 1.3. If {Hn}∞n=1 is a Positive Linear Recurrence Sequence then every positive
integer may be written uniquely as a legal sum

∑

i aiHi (see Definition 1.1). Let Kn be the
random variable of Definition 1.2. Then E[Kn] and Var(Kn) are of order n, and as n → ∞,
Kn and Kn converge to a Gaussian.

Our result extends Zeckendorf’s and Lekkerkerker’s Theorems to a large class of recurrence
relations, and further implies that the distribution of summands converges to a Gaussian.
The proof has three main ingredients. The first is to adopt a combinatorial point of view.
Previous approaches to Lekkerkerker’s Theorem were number theoretic, involving continued
fractions. We instead view this as a combinatorial problem, namely how many ways can we
choose elements in a set subject to some restrictions on what may be taken. This approach
gives us an explicit formula for the number of N in [Hn,Hn+1) that have a given number of
summands. For each interval [Hn,Hn+1) (i.e., for each n) we may thus associate a probability
function pn on [Hn,Hn+1) where pn(k) is the probability of having exactly k+1 summands. As
remarked earlier, we choose to write the density this way as every integer in [Hn,Hn+1) must
have Hn in its decomposition, and thus it is more natural to study the number of additional,
non-forced summands needed. Note pn is the density of the random variable Kn. We then
use generating functions and differentiating identities to obtain tractable formulas for these
summand functions pn, and prove our claims about the mean and the variance. We conclude
by showing that as n → ∞ the centered and normalized moments of pn tend to the moments
of the standard normal; by Markov’s Method of Moments this yields the Gaussian behavior.

We can gain a lot of intuition as to why these results are true by looking at the special
case of L = 1 and c1 = B > 0. For these choices, our sequence is just Hn = Bn−1; in other
words, we are looking at the base B decomposition of integers. Zeckendorf’s Theorem is now
clearly true, as every number has a unique representation. Lekkerkerker and the Gaussian
behavior are now just consequences of the Central Limit Theorem. For example, consider a
decomposition of an N ∈ [Bn, Bn+1):

N = a1B
n + a2B

n−1 + · · · + an+1B
0.

118 VOLUME 49, NUMBER 2



ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS

We have a1 ∈ {1, . . . , B − 1} and all other ai ∈ {0, . . . , B − 1}. We are interested in the
behavior, for large n, of a1 + · · · + an+1 as we vary over N in [Bn, Bn+1). Note for large n
the contribution of a1 is immaterial, and the remaining ai’s can be understood by considering
the sum of n independent, identically distributed uniform random variables on {0, . . . , B − 1}
(which have mean B−1

2 and standard deviation
√

(B2 − 1)/12). Denoting these by Ai, by

the Central Limit Theorem A2 + · · · + An+1 converges to a Gaussian with mean B−1
2 n and

standard deviation n
√

(B2 − 1)/12.
Our approach is quite general, and can handle a variety of related problems. We state just

one more, which allows us to see some very interesting behavior.
Recently Alpert [1] showed that every positive integer can be written uniquely as a sum and

difference of the shifted Fibonacci numbers {Fn}∞n=1 such that every two terms of the same
sign differ in index by at least 4, and every two terms of opposite sign differ in index by at
least 3; we call this the far-difference representation. For example,

2011 = F17 −F14 + F8 + F3 and 1900 = F17 −F14 −F10 + F6 + F2.

If Sn =
∑

0<n−4i≤nFn−4i = Fn + Fn−4 + · · · for positive n and 0 otherwise, then for each

N ∈ (Sn−1, Sn] the first term in its far-difference representation is Fn. Note that 0 has the
empty representation. We can show the following (see [13] for the proof).

Theorem 1.4. Consider the outcome space Ωn = {Sn−1 + 1, Sn−1 + 2, . . . , Sn} with prob-
ability measure P(A) =

∑

ω∈A
1

Sn−Sn−1
for A ⊂ Ωn. Let Kn and Ln be the random variables

denoting the number of positive and negative shifted Fibonacci summands in the far-difference
representation (they are well-defined by [1]). As n → ∞, for any real numbers a and b the
random variable aKn + bLn converges to a Gaussian. The expected value of Kn (which is

α/2 more than that of Ln) is n
10 + 371−113

√
5

40 + o(1); the variance of both is of size 15+21
√
5

1000 n.
Kn and Ln are negatively correlated, with a correlation coefficient of −(21 − 2α)/(29 + 2α).
Further, Kn+Ln and Kn−Ln are independent random variables as n → ∞, which implies the
total number of shifted Fibonacci numbers is independent of the excess of positive to negative
summands.

Unfortunately, our arguments become involved and technical to handle all of the cases
in Theorems 1.3 and 1.4. In order to highlight the ideas without getting bogged down in
computations, in this note we concentrate on the most important special case of Theorem
1.3, namely the shifted Fibonacci numbers, and content ourselves with providing a sketch of
some of the arguments in Theorem 1.4. We first describe our combinatorial perspective, which
yields

pn(k) =

(

n−1−k
k

)

Fn−1
, (1.5)

with pn(k) the probability that anN ∈ [Fn,Fn+1) has exactly k+1 summands in its Zeckendorf
decomposition. All of our theorems follow from knowing this density. The difficulties in the
general case are due to the fact that the corresponding formulas for the densities are far more
involved; here we can easily determine the behavior by applying Stirling’s formula.

We first use our explicit formula for pn(k) to prove Zeckendorf’s Theorem, and then sketch
how we can use it to prove Lekkerkerker’s Theorem for the mean µn, as well as computing the
variance σ2

n. We then show that as n → ∞, pn(k) converges to a Gaussian with mean µn and
variance σ2

n. While technically we could just immediately jump to the limiting behavior of
the density, it would be very unmotivated not knowing the mean and the variance and either
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choosing the correct values by divine inspiration, or having them fall out of the resulting
algebra.

2. Combinatorial Perspective and Zeckendorf’s Theorem

The key input in our analysis is counting the number of solutions to a well-known Diophan-
tine equation. This problem is also known as the stars and bars problem, the cookie problem,
or the simplest case of Waring’s problem (see [12, 14]).

Lemma 2.1.

(1) The number of ways of dividing n identical objects among p distinct people is
(n+p−1

p−1

)

.

Equivalently, this is the number of solutions to y1 + · · · + yp = n with each yi a non-
negative integer.

(2) More generally, the number of solutions to y1 + · · · + yp = n with yi ≥ ci (each ci a

non-negative integer) is
(

n−(c1+···+cp)+p−1
p−1

)

.

Proof. For (1): The two formulations are clearly equivalent; simply interpret yi as the number
of objects person i receives. To prove the claimed formula, imagine the m objects are in a row
and we add p − 1 items at the end. We now have n + p − 1 objects. There is a one-to-one
correspondence between assigning the n objects to the p people and choosing p−1 of n+p−1
objects. There are

(n+p−1
p−1

)

ways to choose p − 1 of the n + p − 1 items. All the items up to

the first one chosen go to person 1, then the items up to the second one chosen go to person
2, and so on.

For (2): We may write yi = xi + ci with each xi ≥ 0 a non-negative integer. Our problem
is equivalent to

(x1 + c1) + · · ·+ (xp + cp) = n,

which becomes

x1 + · · ·+ xp = n− (c1 + · · ·+ cp), xi ≥ 0,

whose solution is given by part (1). �

There are two parts to Zeckendorf’s Theorem: not only does a decomposition exist of any
positive integer as a sum of non-consecutive Fibonacci numbers, but such a decomposition is
unique. As our combinatorial approach does require this uniqueness as an input, we provide
the standard proof below (or see, among others, [5, 16]).

Lemma 2.2 (Zeckendorf’s Theorem - Uniqueness of Decomposition). If two sums of non-
consecutive Fibonacci numbers are equal, then the two sums have the same summands.

Proof. Assume

Fn1
+ Fn2

+ · · ·+ Fnk
= Fm1

+ Fm2
+ · · ·+ Fm`

(2.1)

where n1 ≥ n2 ≥ · · · and m1 ≥ m2 ≥ · · · . Without loss of generality we may assume
Fn1

> Fm1
(as otherwise we would just remove some summands). As each decomposition is

of non-adjacent summands, if we add 1 to the decomposition on the right of (2.1), the largest
it can be is Fm1

+ Fm2+1, which itself is at most Fm1+1. For example, F6 + F4 + F2 + 1 =
F6 +F4 +F3 = F6 +F5 = F7. As Fn1

> Fm1
, we see that adding 1 to the right hand side of

(2.1) yields a number at most Fn1
; thus

Fn1
+ Fn2

+ · · ·+ Fnk
> Fm1

+ Fm2
+ · · · +Fm`

, (2.2)

contradiction. �
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We are now in a position to prove the first part of Zeckendorf’s Theorem. In the course of
our proof we will derive (1.5), the claimed formula for pn(k).

Theorem 2.3 (Zeckendorf’s Theorem - Existence of Decomposition). Any natural number can
be expressed as a sum of non-consecutive shifted Fibonacci numbers. Further, the probability an
N ∈ [Fn,Fn+1) has exactly k+1 summands in its Zeckendorf decomposition is

(

n−1−k
k

)

/Fn−1

(in other words, the density function of the random variable Kn is pn(k) =
(n−1−k

k

)

/Fn−1).

Proof. Consider all N in [Fn,Fn+1). The number of integers in this interval is Fn+1 − Fn =
Fn−1. We claim that each of these Fn−1 integers can be expressed as a sum of a certain subset
of {F1,F2, . . . ,Fn} with the properties that no two consecutive Fibonacci numbers appear in
the sum and that Fn is one of the summands. From the arguments in the proof of Lemma
2.2, it is clear that Fn must appear in this sum since otherwise the sum would be too small
to be an element of [Fn,Fn+1).

We now translate the previous claim into the combinatorial formulation of Lemma 2.1.
Suppose we wish to have k summands in addition to the summand Fn in our sum, with
no two summands adjacent. Clearly k ≤ bn−1

2 c. Choosing a valid set of k summands, say
Fm1

, . . . ,Fmk
, is equivalent to choosing k indices m1,m2, . . . ,mk from the set {1, 2, . . . , n−1},

with the property that mi < m1+1 − 1 and n − 1 is not chosen (as otherwise we would have
the adjacent summands Fn−1 and Fn).

We may assume k > 0, as there is only one way to choose no additional summands. We define
the auxiliary sequence yj as follows: y0 = m1 − 1, and for 1 ≤ j ≤ k, yj = mj+1 −mj − 1 (as
noted earlier, mk+1 = n). For example, with n = 9, k = 3, and the sequence F1+F3+F6+F9,
we have y0 = 0, y1 = 1, y2 = 2 and y3 = 2. Note y0 is the number of indices before the first
index chosen, and for j > 0, yj equals the number of unused indices between mj and mj+1.
Clearly we have y0 ≥ 0 and yj ≥ 1 for j > 0. Thus we have used k + 1 indices (including
the required index n associated with the largest summand, Fn) and y0 + y1 + · · ·+ yk unused
indices from {1, 2, . . . , n}. Hence, we have

(k + 1) + y0 + y1 + · · · + yk = n. (2.3)

If we make the change of variables x0 = y0 and xj = yj − 1 for j > 0, then we have xj ≥ 0
for all j with no other constraints on these variables other than they must satisfy the identity
implicitly given by (2.3); that is

x0 + · · ·+ xk = n− 1− 2k. (2.4)

In other words, in view of Lemma 2.2 we have a bijection between the set of Zeckendorf
decompositions with k + 1 summands having Fn as its largest summand and the set of all
non-negative integer solutions to (2.4). By Lemma 2.1, the number of solutions to (2.4) is
(n−1−2k+(k+1−1)

k+1−1

)

=
(n−1−k

k

)

. Thus the number of Zeckendorf decompositions having largest
summand Fn is precisely

bn−1

2
c

∑

k=0

(

n− 1− k

k

)

, (2.5)

which, by a well-known identity for binomial sums, equals Fn−1 (for a proof, see either [9]
or Appendix A of [8]). As remarked, by Lemma 2.2, each one of these sequences gives rise
to a distinct Zeckendorf sum. Thus the number of Zeckendorf decompositions in the interval
[Fn,Fn+1) is equal to Fn−1, which is the total number of integers in that interval. As n was
arbitrary, and these intervals partition the set of natural numbers, we have shown that every
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natural number has a unique Zeckendorf decomposition, and the number of N in [Fn,Fn+1)

with exactly k+1 summands in its decomposition is
(

n−1−k
k

)

. In other words, the probability

of a number in this interval having precisely k + 1 summands is
(n−1−k

k

)

/Fn−1. �

3. Lekkerkerker’s Theorem and the Variance

We sketch how our approach easily yields Lekkerkerker’s Theorem. We only provide a sketch
as, of course, Lekkerkerker’s Theorem follows immediately from our proof of the Gaussian
behavior. We highlight the key steps as Lekkerkerker’s Theorem is of interest in its own right,
and it is nice to have a new, elementary proof of it (our proof of the Gaussian behavior will
involve Stirling’s formula, and is different than the arguments below).

The average number of summands needed in the Zeckendorf decomposition is just

µn =

bn−1

2
c

∑

k=0

(k + 1)

(

n−1−k
k

)

Fn−1

= 1 +
1

Fn−1

bn−1

2
c

∑

k=0

k

(

n− 1− k

k

)

= 1 +
E(n)
Fn−1

. (3.1)

Thus the problem is reduced to computing

E(n) =
bn−1

2
c

∑

k=0

k

(

n− 1− k

k

)

. (3.2)

We can determine a closed-form expression for E(n) by first showing that it satisfies a certain
recurrence relation.

Lemma 3.1 (Recurrence relation for E(n)). We have

E(n) + E(n − 2) = (n− 2)Fn−3. (3.3)

The proof follows from straightforward algebra (see Appendix A of [8]). Solving the recur-
rence relation yields the following.

Lemma 3.2 (Formula for E(n)). We have

E(n) =
nFn−1

α2 + 1
+O(Fn−2). (3.4)

The proof follows from using telescoping sums to get an expression for E(n), which is then
evaluated by applying Binet’s formula and differentiating identities (see Appendix A of [8] for
the detailed computations).

Lekkerkerker’s Theorem now follows immediately by substituting the result for E(n) from
Lemma 3.2 into the equation for the mean, (3.1). We have the following result.

Theorem 3.3. The average number of non-consecutive shifted Fibonacci summands used in
representing integers in [Fn,Fn+1) is

E[Kn] = µn =
5−

√
5

10
n− 2

5
=

1

α2 + 1
n− 2

5
= E[Kn] + 1. (3.5)
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Figure 1. Plot of the probability p2010(k) of having exactly k+1 summands
in the Zeckendorf decompositions of integers in [F2010,F2011) (with pn(k) =
(n−1−k

k

)

/Fn−1) against the Gaussian with mean µ2010 ≈ 555.55 and variance

σ2
2010 ≈ 179.78.

A similar calculation shows the following.

Theorem 3.4. The variance in the number of non-consecutive shifted Fibonacci numbers used
in representing integers in [Fn,Fn+1) is

Var(Kn) = σ2
n =

1

5
√
5
n− 2

25
=

α

5(α+ 2)
n− 2

25
= Var(Kn). (3.6)

4. Gaussian Behavior

In the last section we computed the mean by evaluating certain combinatorial sums. We
could similarly derive an explicit formula for the variance, or more generally, any moment.
We choose instead to analyze the density pn(k) in greater detail, and show that it converges
pointwise to a Gaussian with mean µn approximately n

α2+1
and variance σ2

n ≈ αn
5(α+2) . In the

course of proving this convergence, the mean and the standard deviation naturally fall out of
the calculation. While this does make the previous section superfluous, we chose to include it
as it provides an elementary proof of Lekkerkerker, as well as telling us what the mean and
variance are, which are a great aid in performing the Stirling analysis below. If we didn’t know
µn and σn we would just keep these as initially free parameters, and then choose the values
appropriately to ensure the limits below exist.

Before delving into the proof of Theorem 1.3, we provide some evidence by looking at the
number of summands in the Zeckendorf decomposition for integers in [F2010,F2011) (see Figure
1); the fit is visually striking.

4.1. Preliminaries. The computation is a little cleaner if instead of studying the interval
[Fn,Fn+1) we instead study [Fn+1,Fn+2). The density is now

pn+1(k) =

(n−k
k

)

Fn
. (4.1)
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We list some useful expansions:

µn+1 =
n

α+ 2
+O(1)

σ2
n+1 =

αn

5(α + 2)
+O(1)

Fn =
α√
5
αn +O ((1− α)n) . (4.2)

We expand
(

n−k
k

)

using Stirling’s formula (see [15] for a proof), which says for large m that

m! = mme−m
√
2πm

(

1 +
1

12m
+

1

288m2
− 139

51840m3
+ · · ·

)

= mme−m
√
2πm

(

1 +O

(

1

m

))

. (4.3)

While we have not proved the variance is of size n, a similar calculation as that for the mean
yields it without any trouble; in the interest of space we merely state the result in Theorem 3.3.
We could also get the right order of magnitude for the variance by the Stirling computation
that follows. As the mean and variance are both of size n, for any fixed ε > 0 as n → ∞
the set of k with |k − µn+1| > n1/2+ε has negligible probability. This follows by Chebyshev’s
inequality. As we are on the order of nε standard deviations from the mean, the probability
is at most O(1/n2ε), which tends to zero with n. Thus we need only worry about analyzing

pn+1(k) for |k− µn+1| ≤ n1/2+ε. For such k, we have k, n− k and n− 2k are all of size n and
hence large, and consequently the first term in Stirling’s formula suffices for our analysis.

After some simple algebra, which includes using Binet’s formula (see (1.1)) for Fn, we find

pn+1(k) =

(

n− k

k

)

1

Fn

=
(n− k)!

k!(n− 2k)!

1

Fn

=
1√
2π

(n − k)n−k+ 1

2

(

1 +O( 1
n−k )

)

kk+
1

2

(

1 +O
(

1
k

))

(n− 2k)n−2k+ 1

2

(

1 +O( 1
n−2k )

)

√
5

α · αn
(

1 +O
(

1
αn

))

=
1√
2π

(n− k)n−k+ 1

2

kk+
1

2 (n− 2k)n−2k+ 1

2

√
5

α · αn

(

1 +O

(

1

n

))

= fn+1(k)

(

1 +O

(

1

n

))

. (4.4)

It suffices to analyze fn+1(k) for |k−µn+1| ≤ n1/2+ε, as the O(1/n) term leads to negligible
changes in the density function. We now split off the terms that exponentially depend on n,
and write

fn+1(k) =

(

1√
2π

√

(n− k)

k(n− 2k)

√
5

α

)

(

α−n (n− k)n−k

kk(n− 2k)n−2k

)

= Nn(k)Sn(k). (4.5)
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We change variables and replace k with its distance from the mean in units of the standard
deviation, σn+1. Thus we write

k = µn+1 + xσn+1, (4.6)

and

fn+1(k)dk = fn+1(µn+1 + σn+1x)σn+1dx. (4.7)

Note the change of variables in (4.6) results in dk transforming to σn+1dx. In these new
variables the main action occurs at x = 0, and the scale is on the order of 1; in other words,
once x is large (such as nε) then we are many standard deviations away and the density is
negligible.

The next few pages present the detailed computation. While the computations are long in
places, the basic idea (the combinatorial perspective) is straightforward: viewing the problem
combinatorially yields an explicit density function, whose large n asymptotics follow from
Stirling’s formula and careful bookkeeping.

4.2. Analysis of Nn(k).

Lemma 4.1. For any ε > 0 we have

Nn(k) =
1

√

2πσ2
n+1

·
(

1 +O
(

n−1/2+ε
))

. (4.8)

Let C = 1
α+2 , so µn+1 = Cn+ O(1), and recall σ2

n+1 = αn
5(α+2) + O(1). We use a change of

variable and some algebra to simplify Nn(k) (defined in (4.5)). We set

u =
σn+1

n
x ≈ x√

n
� O(n−1/2+ε), (4.9)

and find

Nn(k) =
1√
2π

√

n− k

k(n− 2k)

√
5

α

=
1√
2πn

√

1− k/n

(k/n)(1 − 2k/n)

√
5

α

=
1√
2πn

√

1− (µn+1 + σn+1x)/n

((µn+1 + σn+1x)/n)(1− 2(µn+1 + σn+1x)/n)

√
5

α

=
1√
2πn

√

1− C − u

(C + u)(1− 2C − 2u)

√
5

α
·
(

1 +
1

n

)

, (4.10)

where the last error arises from replacing µn+1 with Cn + O(1). In fact, as u = O(n−1/2+ε)

we may drop the u’s at the cost of replacing the error term O(n−1) with O(n−1/2+ε). The
following relations help simplify our expression for Nn(k):

α+ 1 = α2, C =
1

α+ 2
, 1− C =

α+ 1

α+ 2
, 1− 2C =

α

α+ 2
.
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Using these, as well as σ2
n+1 =

αn
5(α+2) +O(1), we find

Nn(k) ≈ 1√
2πn

√

1− C

C(1− 2C)

√
5

α
·
(

1 +O
(

n−1/2+ε
))

=
1√
2πn

√

(α+ 1)(α + 2)

α

√
5

α
·
(

1 +O
(

n−1/2+ε
))

=
1√
2πn

√

5(α + 2)

α
·
(

1 +O
(

n−1/2+ε
))

=
1

√

2πσ2
n+1

·
(

1 +O
(

n−1/2+ε
))

, (4.11)

which is recognizable as the normalization constant for a Gaussian with variance σ2
n+1.

4.3. Analysis of Sn(k).

Lemma 4.2. For any ε > 0 we have Sn(k) = exp(−x2/2) exp
(

O(n−1/2+3ε)
)

.

Proof. To determine the size of Sn(k) (defined in (4.5)), we take logarithms and once again
change variables by k = µn+1 + xσn+1. We find

logSn(k) = log

(

α−n (n− k)n−k

kk(n− 2k)n−2k

)

= −n logα+ (n− k) log(n− k)− k log k − (n− 2k) log(n− 2k)

= −n logα+ (n− (µn+1 + xσn+1)) log(n− (µn+1 + xσn+1))

− (µn+1 + xσn+1) log(µn+1 + xσn+1)

− (n− 2(µn+1 + xσn+1)) log(n− 2(µn+1 + xσn+1))

= −n logα

+(n− (µn+1 + xσn+1))

(

log(n− µn+1) + log

(

1− xσn+1

n− µn+1

))

− (µn+1 + xσn+1)

(

log(µn+1) + log

(

1 +
xσn+1

µn+1

))

− (n− 2(µn+1 + xσn+1))

(

log(n− 2µn+1) + log

(

1− 2xσn+1

n− 2µn+1

))

= −n logα

+(n− (µn+1 + xσn+1))

(

log

(

n

µn+1
− 1

)

+ log

(

1− xσn+1

n− µn+1

))

− (µn+1 + xσn+1) log

(

1 +
xσn+1

µn+1

)

− (n− 2(µn+1 + xσn+1))

(

log

(

n

µn+1
− 2

)

+ log

(

1− 2xσn+1

n− 2µn+1

))

. (4.12)

We may simplify the expression above by replacing any µn+1 inside a logarithm with Cn.
This is because the resulting Taylor expansion of the logarithms will yield a term of size 1/n2.
The largest this can be multiplied by is n, which leads to an error at most O(1/n). We
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exponentiate to get Sn(k), which leads to an error factor of size 1 − exp(O(1/n)), which as
n → ∞ is just of size 1/n. We have

log

(

n

µn+1
− 1

)

= log
n− µn+1

µn+1
= log

1− C

C
+O

(

1

n2

)

= 2 log α+O

(

1

n2

)

,

as (1− C)/C = α+ 1 = α2. Similarly

log

(

n

µn+1
− 2

)

= log
n− 2µn+1

µn+1
= log

1− 2C

C
+O

(

1

n2

)

= log α+O

(

1

n2

)

.

Substituting these into (4.12) yields

log Sn(k) +O

(

1

n

)

= −n logα+ (n− (µn+1 + xσn+1))

(

2 log α+ log

(

1− xσn+1

(1− C)n

))

− (µn+1 + xσn+1) log
(

1 +
xσn+1

Cn

)

− (n− 2(µn+1 + xσn+1))

(

logα+ log

(

1− 2xσn+1

(1− 2C)n

))

. (4.13)

We note that the coefficient of the log α term is zero, so

logSn(k) +O

(

1

n

)

= (n− (µn+1 + xσn+1)) log

(

1− xσn+1

(1− C)n

)

− (µn+1 + xσn+1) log
(

1 +
xσn+1

Cn

)

− (n− 2(µn+1 + xσn+1)) log

(

1− 2xσn+1

(1− 2C)n

)

= ((1− C)n− xσn+1)) log

(

1− xσn+1

(1− C)n

)

− (Cn+ xσn+1) log
(

1 +
xσn+1

Cn

)

− ((1− 2C)n− 2xσn+1)) log

(

1− 2xσn+1

(1− 2C)n

)

. (4.14)

Let u = xσn+1/n. Note u = O(n−1/2+ε), and thus when we expand the logarithms above,
we never need to keep more than the u2 terms, as anything further will be small, even upon
multiplication by n. Expanding gives

logSn(k) +O
(

n−1/2+3ε
)

= (1− C)n

(

− u

1− C
− u2

2(1− C)2

)

− un

(

− u

1−C

)

−Cn

(

u

C
− u2

2C2

)

− un
( u

C

)

−(1− 2C)n

(

− 2u

1− 2C
− 4u2

2(1− 2C)2

)

+ 2un

(

− 2u

1− 2C

)

. (4.15)
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Note all the un terms cancel, and all that survives are the u2n terms. Thus

log Sn(k) +O
(

n−1/2+3ε
)

=

[

− 1

2(1− C)
+

1

1− C
+

1

2C
− 1

C
+

2

1− 2C
− 4

1− 2C

]

u2n

= − u2n

2C − 6C2 + 4C3
. (4.16)

As C = 1
α+2 and u = xσn+1/n with σ2

n+1 =
αn

5(α+2) +O(1), simplifying the above yields

log Sn(k) +O
(

n−1/2+3ε
)

= −x2

2
, (4.17)

and thus exponentiating gives

Sn(k) = exp(−x2/2) exp
(

O(n−1/2+3ε)
)

. (4.18)

�

4.4. Proof of Theorem 1.3. Using the results from the previous subsections (Lemmas 4.1
and 4.2, and the change of variable argument on why a factor of σn+1 enters), we can now
prove the convergence to a Gaussian.

Proof of Theorem 1.3. The only item left to prove in Theorem 1.3 is the convergence to the
Gaussian. We have

pn+1(k)dk = pn+1 (µn+1 + σn+1x) σn+1dx

= Nn(k)Sn(k)σn+1

(

1 +O(n−1/2+3ε)
)

dx

=
1

√

2πσ2
n+1

· e−x2/2 · σn+1

(

1 +O(n−1/2+3ε)
)

dx

=
1√
2π

e−x2/2
(

1 +O(n−1/2+3ε)
)

dx, (4.19)

which clearly converges to the standard normal as n → ∞. �

5. Far-difference representations

We now consider the problem of the far-difference representations. We are studying the
number of positive and negative shifted Fibonacci summands in the decomposition of integers
in [Sn, Sn+1), where Sn =

∑

0<n−4i≤nFn−4i. Using combinatorial arguments as in Lemma 2.1

(which involve solving a variant of this Diophantine problem inside a variant of this Diophan-
tine problem), we can come up with a formula for the joint density function pn(k, `) for the
number of integers in [Sn, Sn+1) with exactly k positive Fibonacci summands and exactly `
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negative Fibonacci summands. After a lot of algebra, we obtain the formula:

pn(k, `) =

k
∑

r=0

(

k − 1

k − r

)

[

(

`− 1

r − 2

)(

n− 3(k + `) + 2r − 3

k + `

)

+

(

`− 1

r − 1

)(

n− 3(k + `) + 2r − 2

k + `

)

+

(

`− 1

r − 1

)(

n− 3(k + `) + 2r − 1

k + `

)

+

(

`− 1

r

)(

n− 3(k + `) + 2r

k + `

)

]

. (5.1)

If we could derive good asymptotics for this formula, we could calculate the limiting density
directly, but this does not seem feasible. With enough patience, this formula can be used to
calculate any particular joint moment, but this approach quickly becomes impractical due to
the combinatorial complexity. Unlike our expression for the standard Fibonacci case, here we
have sums and products of binomial coefficients that would need to be simplified before we
can fruitfully apply Stirling’s formula. As the generating function technique is able to handle
this problem, we invite the reader to see [13] for a complete analysis of this problem.

6. Conclusion and Future Research

Our combinatorial viewpoint has allowed us to extend previous work and obtain Gaussian
behavior for the number of summands for a large class of recurrence relations. This is just
the first of many questions one can ask. Others, which we hope to return to at a later date,
include:

(1) Lekkerkerker’s Theorem, and the Gaussian extension, are for the behavior in intervals
[Fn,Fn+1). Do the limits exist if we consider other intervals, say [Fn + g1(Fn),Fn +
g2(Fn)) for some functions g1 and g2? If yes, what must be true about the growth
rates of g1 and g2?

(2) For the generalized recurrence relations, what happens if instead of looking at
∑n

i=1 ai
we study

∑n
i=1 min(1, ai)? In other words, we only care about how many distinct Hi’s

occur in the decomposition.
(3) What can we say about the distribution of the largest gap between summands in the

Zeckendorf decomposition? Appropriately normalized, how does the distribution of
gaps between the summands behave?
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