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Abstract. We present a short derivation of the known perfect squares in the Fibonacci and
Pell sequences, using an elementary approach leading to several Thue equations which are
then solved using the online Magma calculator.

1. Introduction

The Fibonacci sequences {Fn} and the Pell sequence {Pn} are special cases of the Lucas
sequence {Un} = {Un(P,Q)} defined by:

U0 = 0, U1 = 1, Un+1 = PUn −QUn−1 (n ≥ 1). (1.1)

Thus, {Fn} = {Un(1,−1)} and {Pn} = {Un(2,−1)}.
Interest in the square terms in Lucas sequences was evident as long ago as 1962 when

Ogilvy [12, p. 100] raised the question concerning square terms in the Fibonacci sequence. As
is well-known, the Fibonacci squares were subsequently found, using elementary arguments,
by Wyler [15] and Cohn [2] in 1964, and the Pell squares were found by Ljunggren [6] in 1942,
using algebraic number theory and p-adic analysis.

McDaniel and Ribenboim announced in 1992 [8], that they had determined the square terms
in {Un(P,Q)} for all odd relatively prime P and Q using elementary means, and the proof
appeared in print in 1996 [14].

It appears increasingly unlikely that the methods of elementary number theory will be
successfully employed in finding the square terms in Lucas sequences having an even parameter.
During the last two decades the square terms have been found, for P even, only for {Un(P,−1)}
and {Un(P, 1)}. Kagawa and Terai [4] found the squares in {Un(P,−1)}, for certain restricted
values of P using properties of elliptic curves, Nakamula and Pethő [10] found the squares,
for all P in {Un(P,−1)}, by first transforming certain equations to find units in orders of
infinite families of quartic algebraic number fields, and Mignotte and Pethő [11] used the same
approach in finding the squares in {Un(P, 1)}. We discuss these families of Lucas sequences
more fully in the Discussion Section.

In this paper, we present a very simple method for obtaining the square terms of {Fn}
and {Pn} for n odd and are then able to immediately find the square terms for n even. The
approach we use is quite general and, when applied to the sequences {Un(P,±1)}, provides a
nice concise alternate determination of the squares for the two sequences. The approach, in
general, when applied to a family of Lucas sequences, leads to a parameterized Thue equation
which may then be solved using one of the powerful methods which have been developed
in recent years for solving Thue equations. Our approach then is hybrid in the sense that
elementary means are used for obtaining a parameterized Thue equation, and more advanced
means are used for solving it.

166 VOLUME 49, NUMBER 2



AN EASY DETERMINATION OF THE FIBONACCI AND PELL SQUARES

When this approach is applied to a single Lucas sequence such as {Fn} or {Pn}, as in this
paper, the resulting Thue equations may be solved easily: just as in an earlier time number
theorists were spared tedious calculations through the use of tables such as J. W. L. Glaisher’s
“Number Divisor Tables” [3] so today online calculator tools are readily available to do the
calculating for us. We shall use the online Magma calculator to solve four Thue equations.
(Running time is less than one second in each case.)

It is of interest that the squares in the Fibonacci and Pell sequences (and, in fact, any
Lucas sequence for which P is given and Q = ±1) may thus be found by the interested
student using neither congruences nor the quadratic character of the terms of the sequences,
but using instead as the principal tools, the Pythagorean Theorem and the Magma program.
Our proof is quite understandable to any student who has had high school algebra.

Theorem 1.1. The only perfect squares in the Fibonacci sequence are 0, 1, and 144.

Theorem 1.2. The only perfect squares in the Pell sequence are 0, 1, and 169.

We shall refer to a term which is 2 times a square as a “double-square”, and also prove the
following theorems.

Theorem 1.3. The only double-squares in the Fibonacci sequence are F3 = 2 and F6 = 8.

Theorem 1.4. The only double-square in the Pell sequence is P2 = 2.

2. Some Identities, Properties and Lemmas

For all non-negative integers n:

(1) U2
n+1 −QU2

n = U2n+1.

(2) Un+1Un−1 − U2
n = −Qn−1.

(3) For even P , Un is odd if and only if n is odd.

These identities/properties are well-known and listed in [13].

Lemma 2.1. If m is an odd integer, then, for P = 1 or 2, Um(P,−1) is a square if and only

if (P,m) = (1, 1), (2, 1) or (2, 7).

Proof. We first note that Um(P,−1) is a square if (P,m) = (1, 1), (2, 1) or (2, 7). For the
necessity letm = 2n+1 and assume U2n+1 = z2 for some integer z. Then from (1), U2

n+U2
n+1 =

z2. This Pythagorean equation is primitive since gcd(Un, Un+1) = 1. It follows that, for
relatively prime positive integers a and b, of opposite parity, either

(i) Un = 2ab, Un+1 = a2 − b2, and z = a2 + b2 or
(ii) Un = a2 − b2, Un+1 = 2ab, and z = a2 + b2.

If (i), then from (1.1), Un−1 = Un+1 − PUn = a2 − b2 − 2Pab. Substituting these values in
(2), we have

(a2 − b2)(a2 − b2 − 2Pab)− 4a2b2 = (−1)n.

And upon simplifying, we obtain the Thue equation

a4 − 2Pa3b− 6a2b2 + 2Pab3 + b4 = (−1)n.

Using the online Magma calculator, we solve this Thue equation for P = 1 and P = 2, finding
that there is no solution with a > b > 0 when P = 1, and for P = 2 the only positive solution
is (3, 2). However, (a, b) = (3, 2) implies that Un = 2ab > Un+1 = a2 − b2. Hence, (i) is
impossible.
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If (ii), then from (1.1), Un−1 = Un+1 − PUn = 2ab− P (a2 − b2). Substituting these values
in (2) we have

2ab[(2ab − P (a2 − b2)]− (a2 − b2)2 = (−1)n,

which upon simplifying gives us

a4 + 2Pa3b− 6a2b2 − 2Pab3 + b4 = (−1)n.

Solving for P = 1, we again get no solution, and for P = 2, the only positive solution is (3, 2),
which yields U2n+1(2,−1) = z2 = 169 = U7. Hence, there are no additional solutions. �

Lemma 2.2. If m is an odd integer, then for P = 1 or 2, 2Um(P,−1) is a square if and only

if (P,m) = (1, 3).

Proof. We note that when m is odd, 2Um(2,−1) is not a square since by (3), 2Um(2,−1) is an
even number not divisible by 4. Thus, we may assume P = 1, that is, Um(P,−1) = Fm.

If (P,m) = (1, 3), 2Um(P,−1) = 2 · F3 = 4 is a square.
Let m = 2n + 1, n ≥ 0, and assume that F2n+1 = 2z2 for some integer z. Then from (1),

F 2
n + F 2

n+1 = 2z2, which may be rewritten as the Pythagorean equation.

[(Fn+1 + Fn)/2]
2 + [(Fn+1 − Fn)/2]

2 = z2. (2.1)

It is readily seen that Fn, Fn+1 and z are all odd and the three terms of (2.1) are relatively
prime in pairs. Hence, for positive, relatively prime integers a and b of opposite parity, with
a > b, either

(i) (Fn+1 − Fn)/2 = 2ab, (Fn+1 + Fn)/2 = a2 − b2 and z = a2 + b2, or
(ii) (Fn+1 − Fn)/2 = a2 − b2, (Fn+1 + Fn)/2 = 2ab and z = z2 + b2.

If (i), we find that Fn = a2 − b2 − 2ab, Fn+1 = a2 − b2 + 2ab, and using (1.1), Fn−1 = 4ab.
Substituting these values in (2), we have

(a2 − b2 + 2ab)(4ab) − (a2 − b2 − 2ab)2 = (−1)n,

and upon simplifying,

a4 − 8a3b− 6a2b2 + 8ab3 + b4 = (−1)n+1.

If (ii), we obtain, similarly, the Thue equation

a4 + 8a3b− 6a2b2 − 8ab3 + b4 = (−1)n.

Solving these Thue equations using the online Magma calculator we find for each equation
that there is no solution (a, b) for which a > b > 0. �

We require in the next lemma, the companion Lucas sequence {Vn} = {Vn(P,Q)} which
satisfies the same recurrence relation as {Un} but with initial terms V0 = 2, and V1 = P .

Lemma 2.3. Let n = 2km, k ≥ 1 and m odd. Then Un is a square or twice a square only if

Um and each of Vjm for 1 ≤ j ≤ 2k−1 is a square or 2 times a square.

Proof. From the well-known identity Un = Un/2Vn/2 with n = 2km, we easily obtain Un =

UmVmV2mV4m · · ·Vtm, for t = 2k−1. The gcd of the factors on the right-hand side is either 1
or 2, (see [7]) and therefore Un is a square or twice a square only if each of the factors Um and
Vjm for 1 ≤ j ≤ 2k−1 is a square or 2 times a square. �
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3. Proof of the Theorems

We shall use the standard notations {Ln} and {Rn} for the companion sequences of the
Fibonacci and Pell sequences, respectively.

Simultaneous Proof of Theorems 1.1 and 1.3. By Lemma 2.1, Fn = F1 = 1 is the only square
for n odd, and by Lemma 2.2, F3 = 2 the only odd-indexed term of the Fibonacci sequence
which is 2 times a square. By Lemma 2.3, then, for n even, Fn is a square or 2 times a square
only if n = 2k or n = 2k · 3.

If m = 1, we observe that L2m = L2 = 3 is neither a square nor 2 times a square. By
Lemma 2.3 then, Fn is not a square nor a double-square for n = 2k if k > 1. If m = 3,
L4m = L12 = 322. Since 322 is neither a square nor 2 times a square Fn is not a square nor a
double-square for n = 2k · 3 if k > 2. One readily finds for the values of k not excluded (that
is, for n ≤ 12) that the Fibonacci squares are F0 = 0, F1 = 1, F2 = 1, and F12 = 144, and the
double squares are F3 = 2 and F6 = 8. �

Simultaneous Proof of Theorem 1.2 and 1.4. By Lemma 2.1, P1 = 1 and P7 = 169 are the
only odd-indexed terms of the Pell sequence which are squares and by Lemma 2.2, there are
no such terms which are 2 times a square. By Lemma 2.3, then, the even-indexed square terms
of the Pell sequence must be of the form Pn with n = 2k or n = 2k · 7.

If m = 1, R2 = 6 is neither a square nor 2 times a square. By Lemma 2.3, then, Pn is not a
square nor a double-square for n = 2k if k > 1. If m = 7, R7 = 29; since 29 is neither a square
nor 2 times a square, Pn is not a square nor a double-square for n = 2k · 7 if k ≥ 1. Again,
one readily finds for the values of k not excluded (that is, for n ≤ 7) that the Pell squares are
P0 = 0, P1 = 1, P7 = 169, and the only double square is P2 = 2. �

4. Discussion

The papers [4], [10], and [11] all contain results in addition to those pertaining to the squares
in the respective sequences. For those results having to do with the square terms, however, the
approach of this paper is considerably more efficient. This is particularly true of [4] and [10];
the Thue equations found in our Lemmas 2.1 and 2.2 are special cases of the Thue equation
needed for finding the odd-indexed terms in {Un(P,−1)}, and this Thue equation was solved
in an earlier paper by G. Lettl and A. Pethő [5], and independently by Chen and Voutier [1];
the even-indexed square terms are then readily found from the odd-indexed square terms using
our Lemma 2.3 (with the help of a result of Ljunggren’s). Whether this approach to obtaining
the Thue equations for other families of Lucas sequences, or other related problems, will be
fruitful in obtaining the square terms remains to be seen; work along these lines is under way.

For the benefit of those readers who are not familiar with the MAGMA program, it is
available online at http://magma.maths.usyd.edu.au/calc/andMAGMA’s online help page
occurs at http://magma.maths.usyd.edu.au/magma/handbook/text/453#3670.

Here’s an example illustrating its use: find all integer solutions to the quartic Thue equation
x4−2x3y−6x2y2+2xy3+y4 = −4. To solve this equation, copy the following into the MAGMA
calculator and then click on “Submit” at the bottom of the calculator:

R<x> := PolynomialRing(Integers());

f := x^4 - 2*x^3 - 6*x^2 + 2*x + 1;

T := Thue(f);

Solutions(T,-4);
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5. Commentary

It is well-known that any determination of the perfect squares in the Pell sequence provides
an alternative proof that the solutions of the Diophantine equation x2 + 1 = 2y4 are (x, y) =
(1, 1) and (x, y) = (239, 13). L. J. Mordell asked in [9] whether a simpler proof than that given
by Ljunggren [6] of the solutions of this equation might not be available. While one might
be inclined to suggest that the proof herein qualifies, I would hasten to say that it does not.
The proof is deceptively simple, for the mathematics required to construct the online Magma
calculator involves technically difficult concepts.
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