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ABSTRACT. We describe certain elementary sequences which are integer valued and charac-
terize the integral sequences for the special example Zn412n_1 = x> + 1; this is related to the
alternate terms of the Fibonacci sequence.

1. INTRODUCTION
We consider the sequences generated by the non-linear equation for n > 1
2
Tpi2Tn = Ty + A

with constant A # 0 and initial values z1, xo specified. First, we want to know for a given A,
which integer values of 1 and xo will give a sequence consisting only of integers. We call the
sequence integral if this happens. It is known that the sequences generated by this equation
will have denominators of the form x’f‘lzng_z in general, that is as a formal sequence (this
is the Laurent phenomenon as discussed in [1]). However under special circumstances the
sequence will be integral.

Secondly, we consider the uniqueness (up to sign and shift) of the integral sequences for a
fixed value of A. Can one characterize the values of A for which these integral sequences are
unique? In this regard we prove that when A = 1 the sequence is essentially unique and is
just a signed variation on the alternate terms of the Fibonacci sequence (Corollary 4.2). It
would be interesting to know if there are infinitely many A for which integral sequences are
essentially unique.

However, there are infinitely many cases when uniqueness fails; for example let A = —k2 +
k3 —1, k an integer, then the sequences with z; = 1, 9 = 1 or with z; = 1, 2o = k are distinct
(see 2.1).

2. A-SEQUENCE

We denote by ¥ = ¥ 4(z1,x2) the sequence determined by z,+12,-1 = x% + A; we refer to
this as an A-sequence. We first show that the sequences are linearly recursive.

x%—l—m%—l—A

Proposition 2.1. Suppose that x,, is an A-sequence and let y = =13

satisfies Tp+1 = PTp — Tp—1.

. Then the sequence

Proof. We show that %j”” is constant and equal to p by induction. Certainly this equality
is valid for n = 2: %jl = p. Now assume it is valid for n. Then we have

2 2
Tpto + Ty . L1 +xn + A

Tn+1 Tn1Tn
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because x,, is an A-sequence. Then,
C Tng2+Tn Tl +Tpoa xflJrl—i-x%—i-A
Tpii B Tn LTn+1Tn
xR A rnaze —ahy —ah — A
Tn4+1Tn
_ Tp1Tpgn — 3, — A
B Tn+4+1Tn
=0.
O

2.1. Integral Examples. Here is a method to generate integral sequences. Let x1, o deter-
mine p as before, say z1,zo € {r,s} C Z with %1 €Z,and A=s—72then yu = W =
%1. Certainly r and s has no common factor and the sequence X 4(r, s) consists of integers.
For example with ;1 =r =1, 29 = s, u = s+ 1, A = s — 1, we obtain an integral sequence for

any integer value of A.

2.2. Other Sequences. The sequences T, 1%, 1 = 2 + Bz, + A, are linearly recursive of
z24ai+z1z9+B(z1+a2)+A

degree 3 with characteristic equation X3 — uX? + uX — 1 with u =

T1x2
when B # 0.
The sequences x,4+1Tp—2 = Tpxn+1 + A satisfy the linear recurrence x,4+1 = prn—1 + Tp—3
and o= xl(x3+x%)+A(xo+x2)

TOT1T2 :
In a very similar way one can show that these sequences are linear. These also satisfy the

Laurent conditions of [1]. We leave the details to the interested reader.

3. PELL’S EQUATION AND INTEGRAL A-SEQUENCES

Suppose that 1 = a, u € Z, then using the formula for y we have an integer equation

2 —apr+A+a® =0

. . . . V(ap)2—4A—4a2 | . . .
which will have an integer solution z =z € {%* £ M} if and only if the discrim-
inant is an integer square ¢® and apu =+ ¢ is even.

Hence, we also have integer solutions X = ¢, Y = a to Pell’s equation

X2 - (p? —4)Y? = —4A. (3.1)

Proposition 3.1. The A-sequence is integral if and only if there are integer solutions when ¢
2

is even to: X? — “T_4Y2 = —A when p is even or X? — (u? —4)Y? = —A when u is odd; or

when ¢ is odd then u is odd and X? — (u? — 4)Y? = —4A has a solution with X odd.

Proof. With the notation as above, suppose first that ¢ is even. If u? —4 is odd then a is even
so the equation reduces to X2 — (u? —4)Y? = —A. If %2 — 4 is even then p is also even and
then the equation reduces to X? — ((§)? — 1)Y? = —A.

If, however, c is odd then pu? — 4 and a are both odd and the equation remains as X2 —
(U2 —4)Y? = —4A,
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Conversely if we have solutions to Pell’s equation 3.1 above then we can make an A-sequence
integral solution using the solution for 1 = Y or x1 = 2Y and then solve for x5 using the
quadratic formula given p? — 4 with known z1, A. The equation is simply

23+ A+ a® — pazy =0, (3.2)

and thus we have proven the proposition. O

4. UNIQUENESS PROPERTY FOR A =1

There may not be a unit of norm —1 or —4 in the associated ring for Pell’s equation,
X% —rY? = —1, X2 —rY? = —4. The existence of the unit of norm —1 depends on whether
or not the period of the continued fraction of /r is odd [2].

If » = p is odd and r > 3 then v/r2 — 4 has even period since

Vit —4= <7‘—1;1,g,2,g,1,2r—2>.

2 2
If s = & is an integer then for s > 2, v/s? —1 = (s — 1;1,2s — 2) has even period.

Theorem 4.1. If A =1 then the integral A-sequences exist if and only if p = £3. Any integer
solution to X? —5Y? = —1 gives an integral A-sequence with x1 =Y and x5 a solution to the
quadratic equation x5 — priwe + 1+ 23 = 0.

Proof. We have shown above there are no solutions to Pell’s equation X2 — (u? —4)Y? = —1,

i # £3. Also we have shown above there are no solutions to X? — #iﬂ = —1 for u even
and % > 2. For the last case we consider solutions to Pell’s equation

X2 (2 —4)Y?=—-4

with X = ¢ odd; hence p is odd and Y = a is also odd. We may assume that p? — 4 is
square-free since any square factor can be absorbed into the solution for Y. In this situation
using the congruence (mod 4) we see that the Pell’s equation has no solution if ;> —4 = 3
(mod 4).

Suppose then that D = > —4 =1 (mod 4). The algebraic integers Zp in the field Q(v/D)
properly contains the ring Z[v/D]. If the fundamental unit of Zp does not lie in Z[v/D] then
we get the desired solution to Pell’s equation. Conversely, if we have the desired solution X, Y
odd then we get a unit in Zp which does not lie in Z[v/D]. However the cube of this unit lies
in the ring Z[v/D] which means that there is a solution to Pell’s equation 22 — (u? —4)y? = —1;
but this is impossible since the period is even. (Note that y? —4 =1 (mod 8) is impossible
since there is no solution to 2 = 5 (mod 8). Also p? —4 =5 (mod 8) is used to show that
the cube of a unit in the larger ring lies in the smaller ring.) U

If we also reverse the sequence to include x,,, n < 0 then essentially there are just 4 sequences
when A =1, ignoring the exact starting place.

The solutions for r = u = £3 correspond to odd powers of the fundamental unit o = %

or its inverse a1 = %\/5 and are related to the alternate terms of the Fibonacci sequence.

Corollary 4.2. The integral sequences for A = 1 have starting values x1, xo which are con-
secutive terms in one of the four bi-infinite sequences listed here:

...,—89,34,-13,5,-2,1,—1,2, 5,13, —34,89, ...,
...,89,-34,13,-5,2,—1,1,-2,5,—13,34, -89, ...,
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., —89,-34,-13,-5,-2,—1,-1,-2,-5,—13, 34, 89, ...,
...,89,34,13,5,2,1,1,2,5,13,34,89, ... .

Proof. From the theorem we need to consider ;1 = 43 and the solutions to X2 — 5Y2 = —4.
The solutions are the odd powers of +a, +a~! which give the sequences listed above. O
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