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Abstract. We describe certain elementary sequences which are integer valued and charac-
terize the integral sequences for the special example xn+1xn−1 = x

2
n
+1; this is related to the

alternate terms of the Fibonacci sequence.

1. Introduction

We consider the sequences generated by the non-linear equation for n ≥ 1

xn+2xn = x2n+1 +A

with constant A 6= 0 and initial values x1, x2 specified. First, we want to know for a given A,
which integer values of x1 and x2 will give a sequence consisting only of integers. We call the
sequence integral if this happens. It is known that the sequences generated by this equation
will have denominators of the form xn−1

1 xn−2
2 in general, that is as a formal sequence (this

is the Laurent phenomenon as discussed in [1]). However under special circumstances the
sequence will be integral.

Secondly, we consider the uniqueness (up to sign and shift) of the integral sequences for a
fixed value of A. Can one characterize the values of A for which these integral sequences are
unique? In this regard we prove that when A = 1 the sequence is essentially unique and is
just a signed variation on the alternate terms of the Fibonacci sequence (Corollary 4.2). It
would be interesting to know if there are infinitely many A for which integral sequences are
essentially unique.

However, there are infinitely many cases when uniqueness fails; for example let A = −k2 +
k3−1, k an integer, then the sequences with x1 = 1, x2 = 1 or with x1 = 1, x2 = k are distinct
(see 2.1).

2. A-Sequence

We denote by Σ = ΣA(x1, x2) the sequence determined by xn+1xn−1 = x2n + A; we refer to
this as an A-sequence. We first show that the sequences are linearly recursive.

Proposition 2.1. Suppose that xn is an A-sequence and let µ =
x2
2
+x2

1
+A

x1x2
. Then the sequence

satisfies xn+1 = µxn − xn−1.

Proof. We show that xn+1+xn−1

xn

is constant and equal to µ by induction. Certainly this equality

is valid for n = 2: x3+x1

x2
= µ. Now assume it is valid for n. Then we have

xn+2 + xn

xn+1
=

x2n+1 + x2n +A

xn+1xn
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because xn is an A-sequence. Then,

µ− xn+2 + xn

xn+1
=

xn+1 + xn−1

xn
− x2n+1 + x2n +A

xn+1xn

=
x2n+1 + xn−1xn+1 − x2n+1 − x2n −A

xn+1xn

=
xn−1xn+1 − x2n −A

xn+1xn
= 0.

�

2.1. Integral Examples. Here is a method to generate integral sequences. Let x1, x2 deter-

mine µ as before, say x1, x2 ∈ {r, s} ⊂ Z with s+1
r

∈ Z, and A = s− r2 then µ = r2+s2+s−r2

rs
=

s+1
r
. Certainly r and s has no common factor and the sequence ΣA(r, s) consists of integers.

For example with x1 = r = 1, x2 = s, µ = s+1, A = s− 1, we obtain an integral sequence for
any integer value of A.

2.2. Other Sequences. The sequences xn+1xn−1 = x2n + Bxn + A, are linearly recursive of

degree 3 with characteristic equation X3 − µX2 + µX − 1 with µ =
x2
1
+x2

2
+x1x2+B(x1+x2)+A

x1x2

when B 6= 0.
The sequences xn+1xn−2 = xnxn+1 + A satisfy the linear recurrence xn+1 = µxn−1 + xn−3

and µ =
x1(x2

0
+x2

2
)+A(x0+x2)

x0x1x2
.

In a very similar way one can show that these sequences are linear. These also satisfy the
Laurent conditions of [1]. We leave the details to the interested reader.

3. Pell’s Equation and Integral A-Sequences

Suppose that x1 = a, µ ∈ Z, then using the formula for µ we have an integer equation

x2 − aµx+A+ a2 = 0

which will have an integer solution x = x2 ∈ {aµ
2 ±

√
(aµ)2−4A−4a2

2 } if and only if the discrim-

inant is an integer square c2 and aµ± c is even.
Hence, we also have integer solutions X = c, Y = a to Pell’s equation

X2 − (µ2 − 4)Y 2 = −4A. (3.1)

Proposition 3.1. The A-sequence is integral if and only if there are integer solutions when c

is even to: X2 − µ2
−4
4 Y 2 = −A when µ is even or X2 − (µ2 − 4)Y 2 = −A when µ is odd; or

when c is odd then µ is odd and X2 − (µ2 − 4)Y 2 = −4A has a solution with X odd.

Proof. With the notation as above, suppose first that c is even. If µ2− 4 is odd then a is even
so the equation reduces to X2 − (µ2 − 4)Y 2 = −A. If µ2 − 4 is even then µ is also even and
then the equation reduces to X2 − ((µ2 )

2 − 1)Y 2 = −A.

If, however, c is odd then µ2 − 4 and a are both odd and the equation remains as X2 −
(µ2 − 4)Y 2 = −4A.
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Conversely if we have solutions to Pell’s equation 3.1 above then we can make an A-sequence
integral solution using the solution for x1 = Y or x1 = 2Y and then solve for x2 using the
quadratic formula given µ2 − 4 with known x1, A. The equation is simply

x22 +A+ a2 − µax2 = 0, (3.2)

and thus we have proven the proposition. �

4. Uniqueness Property for A = 1

There may not be a unit of norm −1 or −4 in the associated ring for Pell’s equation,
X2 − rY 2 = −1, X2 − rY 2 = −4. The existence of the unit of norm −1 depends on whether
or not the period of the continued fraction of

√
r is odd [2].

If r = µ is odd and r > 3 then
√
r2 − 4 has even period since

√

r2 − 4 =

(

r − 1; 1,
r − 3

2
, 2,

r − 3

2
, 1, 2r − 2

)

.

If s = µ
2 is an integer then for s ≥ 2,

√
s2 − 1 = (s− 1; 1, 2s − 2) has even period.

Theorem 4.1. If A = 1 then the integral A-sequences exist if and only if µ = ±3. Any integer

solution to X2 − 5Y 2 = −1 gives an integral A-sequence with x1 = Y and x2 a solution to the

quadratic equation x22 − µx1x2 + 1 + x21 = 0.

Proof. We have shown above there are no solutions to Pell’s equation X2 − (µ2 − 4)Y 2 = −1,

µ 6= ±3. Also we have shown above there are no solutions to X2 − µ2
−4
4 Y 2 = −1 for µ even

and µ
2 ≥ 2. For the last case we consider solutions to Pell’s equation

X2 − (µ2 − 4)Y 2 = −4

with X = c odd; hence µ is odd and Y = a is also odd. We may assume that µ2 − 4 is
square-free since any square factor can be absorbed into the solution for Y . In this situation
using the congruence (mod 4) we see that the Pell’s equation has no solution if µ2 − 4 ≡ 3
(mod 4).

Suppose then that D = µ2 − 4 ≡ 1 (mod 4). The algebraic integers ZD in the field Q(
√
D)

properly contains the ring Z[
√
D]. If the fundamental unit of ZD does not lie in Z[

√
D] then

we get the desired solution to Pell’s equation. Conversely, if we have the desired solution X, Y
odd then we get a unit in ZD which does not lie in Z[

√
D]. However the cube of this unit lies

in the ring Z[
√
D] which means that there is a solution to Pell’s equation x2−(µ2−4)y2 = −1;

but this is impossible since the period is even. (Note that µ2 − 4 ≡ 1 (mod 8) is impossible
since there is no solution to x2 ≡ 5 (mod 8). Also µ2 − 4 ≡ 5 (mod 8) is used to show that
the cube of a unit in the larger ring lies in the smaller ring.) �

If we also reverse the sequence to include xn, n ≤ 0 then essentially there are just 4 sequences
when A = 1, ignoring the exact starting place.

The solutions for r = µ = ±3 correspond to odd powers of the fundamental unit α = 1+
√

5
2

or its inverse α−1 = −1+
√

5
2 and are related to the alternate terms of the Fibonacci sequence.

Corollary 4.2. The integral sequences for A = 1 have starting values x1, x2 which are con-

secutive terms in one of the four bi-infinite sequences listed here:

. . . ,−89, 34,−13, 5,−2, 1,−1, 2,−5, 13,−34, 89, . . . ,

. . . , 89,−34, 13,−5, 2,−1, 1,−2, 5,−13, 34,−89, . . . ,
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. . . ,−89,−34,−13,−5,−2,−1,−1,−2,−5,−13,−34,−89, . . . ,

. . . , 89, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 89, . . . .

Proof. From the theorem we need to consider µ = ±3 and the solutions to X2 − 5Y 2 = −4.
The solutions are the odd powers of ±α, ±α−1 which give the sequences listed above. �
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