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Abstract. We consider certain Fibonomial sums with generalized Fibonacci and Lucas num-
bers coefficients and compute them explicitly. Some corollaries are also presented. The tech-
nique is to rewrite everything in terms of a variable q, and then to use Rothe’s identity from
classical q-calculus.

1. Introduction

Define the second order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

For n ≥ k ≥ 1, define the generalized Fibonomial coefficient by
{n

k

}

U
:=

U1U2 · · ·Un

(U1U2 · · ·Uk) (U1U2 · · ·Un−k)

with
{n
0

}

U
=

{n
n

}

U
= 1. When p = 1, we obtain the usual Fibonomial coefficient, denoted by

{

n
k

}

F
.

In this paper, we will present two sets of 4 identities each, which are presented in the notion
of {n

k}U .
Our approach will be as follows. We will use the Binet forms

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn(1 + qn)

with q = β/α = −α−2, so that α = i/
√
q where α, β =

(

p±
√

p2 + 4
)

/2.
Throughout this paper we will use the following notations: the q-Pochhammer symbol

(x; q)n = (1− x)(1− xq) · · · (1− xqn−1) and the Gaussian q-binomial coefficients
[n

k

]

q
=

(q; q)n
(q; q)k(q; q)n−k

.

As stated, this defines the q-Pochhammer symbol only for nonnegative integers. It is extended
as follows: one forms the infinite product

(x; q)∞ :=
∏

j≥0

(1− xqj),

and notices that

(x; q)n =
(x; q)∞
(xqn; q)∞

,

thanks to cancellations. The righthand side, however, makes sense for any n ∈ C; in particular
for negative integers we have
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(x; q)−n =
(x; q)∞

(xq−n; q)∞
=

(x; q)∞
(xq−n; q)n(x; q)∞

=
1

(xq−n; q)n
.

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is

{n

k

}

U
= αk(n−k)

[n

k

]

q
with q = −α−2.

We recall that one version of the Cauchy Binomial Theorem is given by

n
∑

k=0

q

(

k+1
2

)

[n

k

]

q
xk =

n
∏

k=1

(

1 + xqk
)

,

and Rothe’s Formula [1] is

n
∑

k=0

(−1)kq

(k
2

)

[n

k

]

q
xk = (x; q)n =

n−1
∏

k=0

(

1− xqk
)

.

All the identities we will derive hold for general q, and results about generalized Fibonacci
and Lucas numbers come out as corollaries for the special choice of q. We will frequently
denote

{n
k

}

U
by {n

k }.
We shall consider some Fibonomial sums with generalized Fibonacci and Lucas numbers as

coefficients, and then we compute these sums by using Rothe’s Formula after having converted
them into forms involving the Gaussian q-binomial coefficients. Some special cases of these
sums are also given as corollaries.

Here are our main results.

Theorem 1. If n and m are both nonnegative integers, then

2n
∑

k=0

{

2n

k

}

U(2m−1)k = Pn,m

m
∑

k=1

{

2m− 1

2k − 1

}

U(4k−2)n,

2n+1
∑

k=0

{

2n+ 1

k

}

U2mk = Pn,m

m
∑

k=0

{

2m

2k

}

U(2n+1)2k,

2n
∑

k=0

{

2n

k

}

(−1)k U(2m−1)k = Pn,m

m−1
∑

k=0

{

2m− 1

2k

}

U4kn,

2n+1
∑

k=0

{

2n+ 1

k

}

(−1)k U2mk = −Pn,m

m
∑

k=1

{

2m

2k − 1

}

U(2n+1)(2k−1),

where

Pn,m =















n−m
∏

k=0

V2k if n ≥ m,

m−n−1
∏

k=1

V −1
2k if n < m.
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Theorem 2. If n and m are both nonnegative integers, then

2n
∑

k=0

{

2n

k

}

V(2m−1)k = Pn,m

m
∑

k=1

{

2m− 1

2k − 1

}

V(4k−2)n,

2n+1
∑

k=0

{

2n+ 1

k

}

V2mk = Pn,m

m
∑

k=0

{

2m

2k

}

V(2n+1)2k,

2n
∑

k=0

{

2n

k

}

(−1)k V(2m−1)k = Pn,m

m−1
∑

k=0

{

2m− 1

2k

}

V4kn,

2n+1
∑

k=0

{

2n+ 1

k

}

(−1)k V2mk = −Pn,m

m
∑

k=1

{

2m

2k − 1

}

V(2n+1)(2k−1),

where Pn,m is defined as before.

For example, when m = n in Theorem 1, we have the following identities:

2n
∑

k=0

{

2n

k

}

U(2n−1)k = 2
n
∑

k=1

{

2n − 1

2k − 1

}

U(4k−2)n,

2n+1
∑

k=0

{

2n+ 1

k

}

U2nk = 2
n
∑

k=0

{

2n

2k

}

U(2n+1)2k,

2n
∑

k=0

{

2n

k

}

(−1)k U(2n−1)k = 2

n−1
∑

k=0

{

2n− 1

2k

}

U4kn,

2n+1
∑

k=0

{

2n+ 1

k

}

(−1)k U2nk = −2

n
∑

k=1

{

2n

2k − 1

}

U(2n+1)(2k−1).

2. Proofs

We will only prove the first formula of the first theorem since all the other verifications
are very similar. Since the argument is quite involved, we break it down for the reader’s
convenience:

(1) Both sides are translated into q-notation.
(2) Both sides are “computed” using Rothe’s Theorem, introducing complex entries. This

leads to 4 terms on each side.
(3) These terms are matched with each other, which leaves us with 4 identities that are

elementary (but tedious) rearrangements. However, the matching of the 4 pairs of
formulas depends on the parities of m and n.
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First suppose that n ≥ m. We rewrite Pn,m in terms of q-binomial coefficients:

Pn,m =
n−m
∏

k=0

V2k =
n−m
∏

k=0

(α2k + β2k)

= α(n−m)(n−m+1)
n−m
∏

k=0

(1 + q2k) = 2α(n−m)(n−m+1)(−q2; q2)n−m

= 2(−q)−(
n−m+1

2 )(−q2; q2)n−m.

This formula holds for n < m as well, with the usual extension of (q; q)n to arbitrary n.
Similarly, the first formula takes the following form in terms of q-binomial coefficients:

2n
∑

k=0

α(2m−1)k − β(2m−1)k

α− β
αk(2n−k)

[

2n

k

]

q

= 2α(n−m)(n−m+1)(−q2; q2)n−m

×
m
∑

k=1

α(4k−2)n − β(4k−2)n

α− β
α(2k−1)(2m−1−2k+1)

[

2m− 1

2k − 1

]

q

,

which is equivalent to

2n
∑

k=0

[1− q(2m−1)k]α2(m+n)k−2(k+1

2 )
[

2n

k

]

q

= 2α(n−m)(n−m+1)−2(m+n)(−q2; q2)n−m

×
m
∑

k=1

[1− q(4k−2)n]α4k(m+n)−2k(2k−1)

[

2m− 1

2k − 1

]

q

,

and to

2n
∑

k=0

[1− q(2m−1)k](−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

= 2(−q)−(
n−m+1

2 )+(m+n)(−q2; q2)n−m

×
m
∑

k=1

[1− q(4k−2)n](−1)kq−2k(m+n)+k(2k−1)

[

2m− 1

2k − 1

]

q

.

We are going to prove this form.
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If we denote the left and right hand sides of this equation by L and R, respectively, then L
is the sum of the following two parts:

L1 =

2n
∑

k=0

(−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

=

2n
∑

k=0

(−1)−(m+n− 1

2
)k+ k

2

2 q−(m+n−1)k+(k2)
[

2n

k

]

q

=

2n
∑

k=0

(−1)−(m+n− 1

2
)kq−(m+n−1)k+(k2)

[

2n

k

]

q

[1 + i

2
+

1− i

2
(−1)k

]

=
1 + i

2

2n
∑

k=0

(−1)−(m+n− 1

2
)kq−(m+n−1)k+(k2)

[

2n

k

]

q

+
1− i

2

2n
∑

k=0

(−1)−(m+n+ 1

2
)kq−(m+n−1)k+(k2)

[

2n

k

]

q

=
1 + i

2
(i(−q)−(m+n−1); q)2n +

1− i

2
(−i(−q)−(m+n−1); q)2n

and

L2 = −
2n
∑

k=0

q(2m−1)k(−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

= −
2n
∑

k=0

(−1)(m−n+ 1

2
)k+ k

2

2 q(m−n)k+(k2)
[

2n

k

]

q

= −
2n
∑

k=0

(−1)(m−n+ 1

2
)kq(m−n)k+(k2)

[

2n

k

]

q

[1 + i

2
+

1− i

2
(−1)k

]

= −1 + i

2

2n
∑

k=0

(−1)(m−n+ 1

2
)kq(m−n)k+(k2)

[

2n

k

]

q

− 1− i

2

2n
∑

k=0

(−1)(m−n− 1

2
)kq(m−n)k+(k2)

[

2n

k

]

q

= −1 + i

2
(−i(−q)m−n; q)2n − 1− i

2
(i(−q)m−n; q)2n.

The evaluations of the sums have been done with Rothe’s formula.
By combining the two parts above we write L as

1 + i

2
(i(−q)−(m+n−1); q)2n +

1− i

2
(−i(−q)−(m+n−1); q)2n

− 1 + i

2
(−i(−q)m−n; q)2n − 1− i

2
(i(−q)m−n; q)2n

= La + Lb + Lc + Ld.
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Let

R1 =

m
∑

k=1

[1− q(4k−2)n](−1)kq−2k(m+n)+k(2k−1)

[

2m− 1

2k − 1

]

q

= iq−(m+n)
2m−1
∑

k=0

[1− q2kn]ikq−k(m+n−1)+(k2)
[

2m− 1

k

]

q

1− (−1)k

2

=
1

2
iq−(m+n)

2m−1
∑

k=0

[1− q2kn]ikq−k(m+n−1)+(k2)
[

2m− 1

k

]

q

− 1

2
iq−(m+n)

2m−1
∑

k=0

[1− q2kn](−i)kq−k(m+n−1)+(k2)
[

2m− 1

k

]

q

=
1

2
iq−(m+n)(−iq−m−n+1; q)2m−1 −

1

2
iq−(m+n)(−iq−m+n+1; q)2m−1

− 1

2
iq−(m+n)(iq−m−n+1; q)2m−1 +

1

2
iq−(m+n)(iq−m+n+1; q)2m−1.

Again, Rothe’s formula has been used for simplification.
In order to form the right hand side R, the last expression must be multiplied by

2(−q)−(
n−m+1

2 )+(m+n)(−q2; q2)n−m.

Thus R takes the form:

R = i(−q)−(
n−m+1

2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1

− i(−q)−(
n−m+1

2 )(−q2; q2)n−m(−iq−m+n+1; q)2m−1

− i(−q)−(
n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1

+ i(−q)−(
n−m+1

2 )(−q2; q2)n−m(iq−m+n+1; q)2m−1

= Ra +Rb +Rc +Rd.

We will show that for m ≡ n (mod 2),

La = Ra, Lb = Rc, Lc = Rb, Ld = Rd,

and for m 6≡ n (mod 2),

La = Rc, Lb = Ra, Lc = Rd, Ld = Rb.

We start with the instance m ≡ n (mod 2), and first show that La = Ra. If we rearrange
both sides of it, the claimed equality becomes

1 + i

2
(i(−q)−(m+n−1); q)2n = i(−q)−(

n−m+1

2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1,

or
1 + i

2
(−iq−m−n+1; q)2n = i(−q)−(

n−m+1

2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1,

or
1 + i

2
(−iqm−n; q)2n−2m+1 = i(−q)−(

n−m+1

2 )(−q2; q2)n−m.
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In order to show the last equality, we consider two cases. For even N , by rearranging both
sides of it we get

1 + i

2
(−iq−N ; q)2N+1 = i(−q)−(

N+1

2 )(−q2; q2)N ,

or

1 + i

2

2N
∏

k=0

(1 + iq−N+k) = i(−q)−(
N+1

2 )(−q2; q2)N ,

or

1 + i

2

N
∏

k=1

(1 + iq−k)
N
∏

k=1

(1 + iqk)(1 + i) = i(−q)−(
N+1

2 )(−q2; q2)N ,

or
N
∏

k=1

(1 + iq−k)
N
∏

k=1

(1 + iqk) = (−q)−(
N+1

2 )(−q2; q2)N ,

or
N
∏

k=1

i(q−k + qk) = (−q)−(
N+1

2 )(−q2; q2)N ,

or

i
Nq−(

N+1

2 )
N
∏

k=1

(1 + q2k) = (−q)−(
N+1

2 )(−q2; q2)N ,

or

i
N = (−1)N/2 = (−1)−(N+1)N

2 ,

as claimed.
Now we prove the second claim Lb = Rc. By rearranging both sides of it, we get

1− i

2
(−i(−q)−(m+n−1); q)2n = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1− i

2
(iq−m−n+1; q)2n = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1− i

2
(iqm−n; q)2n−2m+1 = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m,

or

1− i

2

2n−2m
∏

k=0

(1− iqm−n+k) = −i(−q)−(
n−m+1

2 )(−q2; q2)n−m,

or

1− i

2

n−m
∏

k=1

(1− iq−k)(1− iqk) · (1− i) = −i(−q)−(
n−m+1

2 )(−q2; q2)n−m,

or

(−i)n−m
n−m
∏

k=1

q−k(1 + q2k) = (−q)−(
n−m+1

2 )(−q2; q2)n−m,

which becomes

i
n−m = (−1)−(

n−m+1

2 ),

as claimed.
We note that the other cases (for m ≡ n (mod 2)) can be done similarly.
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Now we consider the case La = Rc if m 6≡ n (mod 2). By simplifying both sides of the
claimed equality step by step, we get

1 + i

2
(i(−q)−(m+n−1); q)2n = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1 + i

2
(iq−m−n+1; q)2n = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1 + i

2
(iqm−n; q)2n−2m+1 = −i(−q)−(

n−m+1

2 )(−q2; q2)n−m,

or

1 + i

2

2n−2m
∏

k=0

(1− iqm−n+k) = −i(−q)−(
n−m+1

2 )(−q2; q2)n−m,

or

1 + i

2

n−m
∏

k=1

(1− iq−k)(1− iqk) · (1− i) = −i(−q)−(
n−m+1

2 )(−q2; q2)n−m,

or

i
n−m

n−m
∏

k=1

q−k(1 + q2k) = i(−q)−(
n−m+1

2
)(−q2; q2)n−m,

or

i
n−m = i(−1)−(

n−m+1

2 ),

which is true as claimed.
The other cases (for m 6≡ n (mod 2)) can be done similarly.
The arguments hold for n < m as well.
As announced, the remaining 3 cases of the first and the 4 cases of the second theorem

are completely analogous and therefore omitted to save space (and the patience of the gentle
reader).

3. The Identities in q-notation

For the reader’s convenience, here is the complete list of q-binomial versions of the identities
given in Theorem 1 and Theorem 2. Let n and m both be nonnegative integers,

2n
∑

k=0

[1− q(2m−1)k](−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

= Pn,m

m
∑

k=1

[1− q(4k−2)n](−q)−(2k−1)(m+n−k)

[

2m− 1

2k − 1

]

q

,

2n+1
∑

k=0

[1− q2mk](−q)−(m+n)k+(k2)
[

2n+ 1

k

]

q

= Pn,m

m
∑

k=0

[1− q2k(2n+1)](−q)k(2k−2m−2n−1)

[

2m

2k

]

q

,
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2n
∑

k=0

(−1)k[1− q(2m−1)k ](−q)−(m+n)k+(k+1

2
)
[

2n

k

]

q

= Pn,m

m−1
∑

k=0

[1− q4kn](−q)k(2k−2m−2n+1)

[

2m− 1

2k

]

q

,

2n+1
∑

k=0

(−1)k[1− q2mk](−q)−(m+n)k+(k2)
[

2n + 1

k

]

q

= −Pn,m

m
∑

k=1

[1− q(2k−1)(2n+1)](−q)(2k−1)(k−m−n−1)

[

2m

2k − 1

]

q

,

2n
∑

k=0

[1 + q(2m−1)k](−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

= Pn,m

m
∑

k=1

[1 + q(4k−2)n](−q)−(2k−1)(m+n−k)

[

2m− 1

2k − 1

]

q

,

2n+1
∑

k=0

[1 + q2mk](−q)−(m+n)k+(k2)
[

2n+ 1

k

]

q

= Pn,m

m
∑

k=0

[1 + q2k(2n+1)](−q)k(2k−2m−2n−1)

[

2m

2k

]

q

,

2n
∑

k=0

(−1)k[1 + q(2m−1)k ](−q)−(m+n)k+(k+1

2 )
[

2n

k

]

q

= Pn,m

m−1
∑

k=0

[1 + q4kn](−q)k(2k−2m−2n+1)

[

2m− 1

2k

]

q

,

2n+1
∑

k=0

(−1)k[1 + q2mk](−q)−(m+n)k+(k2)
[

2n + 1

k

]

q

= −Pn,m

m
∑

k=1

[1 + q(2k−1)(2n+1)](−q)(2k−1)(k−m−n−1)

[

2m

2k − 1

]

q

,

where

Pn,m =

{

2(−q)−(
n−m+1

2 )(−q2; q2)n−m if n ≥ m,

(−q)(
m−n

2 )(−q2; q2)−1
m−n−1 if n < m.

Remark. It is not necessary to split the definition of Pn,m, as the first alternative would work

in both cases, but it is more convenient as given.
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4. Conclusion

The coefficients
[n

k

]

q
=

(q; q)n
(q; q)k(q; q)n−k

are only defined for n, k nonnegative integers. However, as explained in the Introduction, we
could allow n, k, n− k to be anything. In order to give sense to

n
∑

k=0

ak,

we could proceed like this:
n
∑

k=0

ak =
∑

k≥0

ak −
∑

k≥n+1

ak =
∑

k≥0

ak −
∑

k≥0

an+k+1,

and this works well if the coefficients ak make sense for arbitrary indices and the series converge.
However, if n is a negative integer, then

∑

k≥0

ak −
∑

k≥0

an+k+1 = −
−1
∑

k=n+1

ak,

and this can be used even without convergence issues.
We believe that our formulas – with these extended definitions – hold as well for a larger

range of values for m and n. However, we have not checked details here.
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