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Abstract. A bijective proof is given for the following theorem: the number of compositions
of n into odd parts equals the number of compositions of n + 1 into parts greater than one.
Some commentary about the history of partitions and compositions is provided.

1. Introduction

A composition of an integer n is a representation of n as a sum of positive integers. For
example the eight compositions of 4 are as follows:

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

A partition of n is a representation of n as a sum of positive integers where the order of the
summands is considered irrelevant. Thus 2 + 1 + 1, 1 + 2 + 1, and 1 + 1 + 2 are three distinct
compositions, but are all considered to be the same partition of 5.

The individual summands of a composition or partition are called its parts. By convention,
the parts of a partition are written in weakly decreasing order. Thus the five partitions of 4
are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

A composition of n with ` parts may be represented graphically by n unit lengths separated
by ` − 1 nodes in such a way as to depict a part j by j adjacent unit lengths bounded by a
node on either side (in the case of an interior part) and a node on one side (in the case of the
first or last part). See MacMahon [10, Sec. IV, Ch. 1, p. 151, paragraph 125]. Let us agree
to call this representation the MacMahon graph of a composition.

For example, the composition 2 + 4 + 1 + 1 + 5 of 13 has the following MacMahon graph:

−− · − − −− · − · − · − − −−−.

It is then straightforward to encode the MacMahon graph of a composition of n with ` parts
as a bit sequence of length n − 1 consisting of `− 1 ones and n − ` zeros, where, as we read
the graph from left to right, we choose a 1 if a node is present between two unit lenghts, and
a 0 if no node is present. For consistency, we may as well call this the MacMahon bit sequence

of a composition.
Thus the MacMahon bit sequence corresponding to the composition 2 + 4 + 1 + 1 + 5 is

01 0001 1 1 0000.

We have chosen to put a space after each “1” in the bit sequence, as this makes it easy to read
the corresponding composition.

It follows from the MacMahon bit sequence that there are 2n−1 compositions of n, since the
bit sequence is of length n − 1, and each bit may take on either of two values. Thus, for n a
positive integer, we have the formula

c(n) = 2n−1 (1)
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where c(n) denotes the number of compositions of n.
The theory of partitions began with Euler in the mid-eighteenth century. In an effort to

understand certain aspects of partitions, Euler introduced the idea of a generating function

of a sequence {an}, that is, he encoded the sequence as the coefficients of a power series
∑∞

n=0 anx
n. In particular, Euler showed that the generating function for p(n), the number of

partitions of n, can be expressed as an elegant infinite product:

∞
∑

n=0

p(n)xn =
∞
∏

j=1

1

1− xj
, (2)

where |x| < 1 to ensure convergence if x is taken to be a complex variable. This is necessary
when analytic properties of (2) are studied. When (2) is used for combinatorial purposes,
x may be taken to be a formal variable. Euler also showed that (2) implies the following
recurrence for p(n):

p(n) =
∞
∑

j=1

(−1)j−1

(

p

(

n− j(3j − 1)

2

)

+ p

(

n− j(3j + 1)

2

))

. (3)

We pause to remark that in contrast to the extremely simple formula (1) for c(n), the
behavior of p(n) is much more complicated. In 1937, Hans Rademacher [11], building on
earlier work by Hardy and Ramanujan [8], proved the following formula for p(n):

p(n) =
1

π
√
2

∞
∑

k=1

√
kAk(n)

d

dn


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
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k
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(

n− 1
24

)

)

√

n− 1
24











, (4)

where Ak(n) is a Kloosterman-type sum,

Ak(n) =
∑

0≤h<k

gcd(h,k)=1

exp

(

πis(h, k) − 2πinh

k

)

,

and s(h, k) is a Dedekind sum,

s(h, k) =
k−1
∑

j=1

((

j

k

))((

hj

k

))

,

with

((x)) :=

{

x− bxc − 1
2 , if x 6∈ Z

0, if x ∈ Z
.

Peter Shiu adapted (4) to compute p(106) [14].
Equation (4) was the only exact explicit formula known for p(n) until Ken Ono and Jan

Bruinier amazed the mathematical community in early 2011 with the announcement [2] of a
new formula for p(n) as a finite sum of algebraic numbers. The Ono-Bruinier formula for p(n),
however, is by no means elementary: the algebraic numbers in question are singular moduli
for a Γ0(6) weight −2 meromorphic modular form expressible in terms of the quasimodular
Eisenstein series

E2(z) := 1− 24

∞
∑

n=1

∑

d|n

dqn
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and the Dedekind eta function

η(z) := eπiz/12
∞
∏

n=1

(1− e2πizn).

Often one wishes to consider sets of partitions where there is some restriction on which parts
may appear. Perhaps the most famous identity in the theory of partitions is the following
theorem.

Theorem 1.1 (Euler’s partition theorem). The number of partitions of n into odd parts equals

the number of partitions of n into distinct parts.

For example, consider the partitions of 8 into distinct parts:

8 7 + 1 6 + 2 5 + 3 5 + 2 + 1 4 + 3 + 1.

There are six in all. Now consider the partitions of 8 into odd parts:

7+ 1 5+3 5+1+ 1+1 3+3+1+ 1 3+ 1+1+ 1+ 1+1 1+1+ 1+1+1+ 1+1+ 1.

Again, there are six in all.
Notice that while Theorem 1.1 predicts that there are the same number of partitions of 8

into distinct parts as there are partitions of 8 into odd parts, the fact that there happen to be
six such partitions in each class is not predicted by Theorem 1.1.

Let q(n) denote the number of partitions of n into odd parts, or into distinct parts. Then
q(n) may be computed via the recurrence

q(n) +

∞
∑

k=1

(−1)k (q (n− 3k + 1)) + q (n− 3k − 1)) =

{

1 if n = m(m+ 1)/2
0 otherwise

,

which is Theorem 1 in [13].
Euler proved Theorem 1.1 in a book published in 1748 [4, p. 275] using generating functions.

The first bijective proof of Theorem 1.1 was given by J. W. L. Glaisher [5] in 1883.
For a thorough yet gentle exposition of these two proofs of Theorem 1.1, please see Chapters

5 and 2, respectively of Andrews and Eriksson’s book Integer Partitions [1].
It would seem natural to seek an analogous identity involving compositions of n with odd

parts. We offer the following theorem.

Theorem 1.2. The number of compositions of n into odd parts equals the number of compo-

sitions of n+ 1 into parts greater than one.

Theorem 1.2 is an immediate consequence of two older results: Cayley [3] showed that
the number of compositions of n + 1 into parts greater than one equals the nth Fibonacci
number Fn. That the number of compositions of n into odd parts equals Fn is observed a
number of places in the literature. The earliest reference this author found was in Volume 1
of Richard Stanley’s Enumerative Combinatorics [15, p. 46, ex. 14], which was published in
1986. However, it seems likely that the result is much older.

Here we define Fn by
F0 = 0, F1 = 1

and
Fn = Fn−1 + Fn−2 when n ≥ 2.

Our objective in the next section is to provide a bijective proof of Theorem 1.2. But before
doing so, we need to introduce the conjugate of a composition.
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The conjugate c′ of a composition c is the composition obtained from c by taking the bit
complement of the MacMahon bit sequence of c, i.e. change all of the zeros to ones and vice
versa. Thus the conjugate of the composition 2+4+1+1+5 is 1+2+1+1+4+1+1+1+1
because the MacMahon bit sequence of the former is

0100 0111 0000

while that of the latter is

1011 1000 1111.

2. Bijective Proof of Theorem 1.2 With a Guiding Example

Let us begin with a composition a of n into ` parts, a1 + a2 + · · · + a` in which each part
ai is odd. We wish to map a to a composition of n+ 1 in which all parts are greater than 1.

As we proceed, let us visualize an example. Let us take a to be 1+1+1+9+1+1+5+3,
which has MacMahon bit sequence 111 000000001 1 1 00001 00.

Notice that because all of the parts in a are odd, the corresponding MacMahon bit sequence
must have zeros appear in strings of even length.

Let us now map a to its conjugate composition a′, which is a composition of n of length
n− `+1. The number of parts in a′ must be odd as n and ` must be of the same parity from
the elementary fact that the sum of an even number (resp. odd number) of odd integers is
even (resp. odd).

Recalling that the MacMahon bit sequence of a has all of its zeros appearing in strings of
even length, the MacMahon bit sequence for a′ must have the property that all of its ones
appear in strings of even length. In our example, we have the MacMahon bit sequence of a′

as 0001 1 1 1 1 1 1 1 0001 1 1 1 01 1, so in our example a′ is

4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 4 + 1 + 1 + 1 + 2 + 1 + 1.

That the bit sequence of a′ consists of pairs of ones (sometimes separated by some zeros)
means that every even index part, i.e. the second, fourth, sixth, etc. part, must be a 1.

Thus let us map a′ to the composition b obtained from a′1 + a′2 + · · ·+ a′n−`+1 by summing
adjacent pairs of parts, i.e. let

bi = a′2i−1 + a′2i

for i = 1, 2, l . . . , n−`
2 ; and let the last part of b equal the last part of a′:

bn−`

2
+1 = a′n−`+1.

So in our example, we have b given by

5 + 2 + 2 + 2 + 5 + 2 + 3 + 1.

Thus we see that b is almost our target; it is a composition of n where all parts other than
the last part are greater than 1. But this is easily fixed. Simply map b to the composition c

obtained from b by increasing the last part of b by one. Thus, c is a composition of n+ 1 in
which all parts are greater than one, as desired. In our example, we have that the image of
1 + 1 + 1 + 9 + 1 + 1 + 5 + 3 is 5 + 2 + 2 + 2 + 5 + 2 + 3 + 2.

The steps are easily reversible: begin with a composition of n + 1 into parts greater than
one, reduce the last part by 1, split each part j (other than the last part) into the pair of parts
j − 1, 1, and conjugate the resulting composition. The final composition is a composition of
n with all parts odd. �
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3. Commentary on Enumeration

Theorem 1.2 tells us that the number of compositions of n into odd parts equals the number
of compositions of n + 1 into parts greater than one, but does not indicate how many such
compositions there are for a given n. Likewise, Euler’s Theorem 1.1 indicates that there are
as many partitions of n into odd parts as there are partitions of n into distinct parts, but does
not indicate how many such partitions there are for a given n.

The first to find an exact explicit formula for the number q(n) of partitions of n into odd
parts was Loo-Keng Hua [9, p. 195]. Later, Peter Hagis [7] gave the following Rademacher-type
convergent series representation for q(n).

q(n) =
π√

24n + 1

∑

k≥1

2-k

k−1
∑

1≤h<k

gcd(h,k)=1

exp

(

πi

(

t(h, k) − 2nh

k

)

)

I1

(

π
√
48n+ 2

12k

)

, (5)

where

t(h, k) =

k
∑

j=1

((

2j − 1

2k

))((

h(2j − 1)

k

))

,

and once again

((x)) :=

{

x− bxc − 1
2 , if x 6∈ Z

0, if x ∈ Z
,

and I1(z) is the modified Bessel function of order 1 [16, p. 77, Eq. (2)].
In contrast, letting Q(n) denote the number of compositions into odd parts, we have the

very simple formula

Q(n) = Fn. (6)

It is an easy exercise to establish Equation (6) combinatorially, as in [6]. Of course, Binet’s
formula immediately implies

Q(n) =

(

1 +
√
5
)n −

(

1−
√
5
)n

2n
√
5

,

giving us a direct, non-recursive formula for Q(n) that is much simpler than anything known
for q(n). However, this formula for Q(n) is not useful for large values of n because of the

roundoff error generated in computing (1±
√
5)n.

The theory of partitions has a longer and more varied literature than that of compositions.
Perhaps this is due to mathematicians feeling that the theory of partitions is deeper, and
hence more interesting than that of compositions. After all, the generating function for p(n)
is a certain infinite product which (up to a trivial multiple) just so happens to be a modular
form. On the other hand, the generating function for c(n) can easily be seen, using (1) and
then summing the geometric series to be

∞
∑

n=1

c(n)xn =
∞
∑

n=1

2n−1xn =
x

1− 2x
,

a mere rational function.
But before we too hastily dismiss compositions as the less worthy relatives of partitions, let

us turn back to Euler’s partition theorem (Theorem 1.1) for some further inspiration. Because
Theorem 1.1 involves partitions into odd parts, we considered compositions into odd parts.
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But Theorem 1.1 also involves partitions into distinct parts. So what about compositions into
distinct parts? These are not so easily dealt with.

We can make a start by observing that for any partition into ` distinct parts, there corre-
sponds `! compositions into ` distinct parts. Using ideas that follow from Euler’s, it can be
shown that the generating function for partitions into ` distinct parts is

x`(`+1)/2

(1− x)(1− x2)(1 − x3) · · · (1− x`)
,

and thus the generating function for compositions into ` distinct parts is

x`(`+1)/2 `!

(1− x)(1− x2)(1 − x3) · · · (1− x`)
,

and thus the generating function for compositions into distinct parts is

∞
∑

`=0

x`(`+1)/2 `!

(1− x)(1− x2)(1− x3) · · · (1− x`)
,

a far cry from the simplicity of the generating function for c(n). In fact, in a 1995 paper [12]
entitled Compositions with Distinct Parts, Bruce Richmond and Arnold Knopfmacher remark
that their “analysis is more complicated than is usual for compositions problems. The results
imply however that the behaviour of these functions is of comparable complexity to partition
problems.”
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