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Abstract. There is no right triangle with rational sides and area equal to one. We study a
convergent sequence of “Fibonacci ratios” and show that its limit is related to rational right
triangles of area as close to one as one may like.

1. Introduction: One is Not a Congruent Number

A more than one-thousand-year-old Arab manuscript deals with the following problem:
given an integer n, find a square x2 such that x2 ± n are both squares (cf. [1]). It is easy
to see that the appearance of three squares in arithmetic progression of common difference n

is equivalent to the existence of a right triangle with rational sides and area equal to n. A
positive integer n is said to be a congruent number if there exists a right triangle with rational
sides and area equal to n. Fibonacci found the following right triangle with sides

3

2
,
20

3
,
41

6
, (1.1)

which implies that 5 is a congruent number. It is easy to construct congruent numbers from
pythagorean triples; for example, the triple 3–4–5 leads to the congruent number 6. However,
it seems rather difficult to check whether a given positive integer is a congruent number or not
(since the sides of the right triangle are not necessarily integers). Using his famous descent

infinie, Fermat proved that 1, 2, and 3 are not congruent numbers. In particular, there is no
perfect squares amongst the congruent numbers (since otherwise the corresponding rational
triangle would be similar to one with area equal to 1).

The congruent number problem is to decide whether a given positive integer is a congruent
number. There is a simple translation of the congruent number problem into the theory
of elliptic curves (see [2]) which implies that n is a congruent number if and only if the
elliptic curve En given by the Weierstrass equation Y 2 = X3 − n2X contains a rational point
(x, y) with non-vanishing y-coordinate or, equivalently, that the Mordell-Weil group En(Q) of
rational points has positive rank. Celebrated work of Tunnell [4] implies that if n is an odd
square-free congruent number, then the number of integer representations of n by the quadratic
form 2x2 + y2 + 8z2 is twice the number of integer representations of n by 2x2 + y2 + 32z2,
and the converse implication is true provided the famous, yet unsolved Birch & Swinnerton-
Dyer conjecture holds (i.e., the rank of En is positive if and only if the associated L-function
vanishes at the central point). A similar criterion exists for even numbers n. This conjectural
equivalent for the congruent number problem in terms of the number of representations of n
by certain ternary quadratic forms allows us to determine by computation whether a given
integer n is congruent or not.
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Fibonacci sequences are sequences built from Fibonacci numbers; such sequences have been
studied for various reasons. In this paper, we shall study a new Fibonacci sequence which has
a bearing on congruent numbers.

2. A Sequence of Fibonacci Ratios

In view of Fibonacci’s example (1.1) we first construct a sequence of rational numbers

which converges to
√
5; the elements of this sequence are explicitly given in terms of Fibonacci

numbers Fn which are recursively defined by Fn+1 = Fn + Fn−1 and F1 = 1, F0 = 0. We start
with the continued fraction expansion of the quadratic irrational

√
5 = 2 +

1

4 + 1

4+···

= [2, 4],

where we use the standard notation for continued fractions and 4 indicates that all partial
denominators in the infinite expansion of the fractional part of

√
5 are equal to 4. For the sake

of completeness we mention that, if we let x = [2, 4], then the continued fraction expansion of√
5 follows from solving the quadratic equation

x− 2 =
1

x+ 2
⇐⇒ x2 = 5;

obviously, the positive root of the quadratic equation yields the value for x.

Theorem 2.1. The nth convergent of the continuous fraction expansion of
√
5 is given by

rn :=
F3n+1 + F3n−1

F3n

for n ∈ N.

Moreover,

rn =
√
5 +O(φ−6n),

where φ := 1

2
(
√
5 + 1) is the golden ratio.

Proof. It is well-known that the convergents
pn

qn
= [2, 4, . . . , 4] (with n partial quotients 4)

yield successively the closest rational approximations to
√
5 with respect to the size of their

denominators. Actually, this holds for arbitrary real numbers in place of
√
5 and is known

as Lagrange’s law of best approximations; for this and further results on continued fractions
we refer to [3]. Moreover, the sequences of numerators pn and denominators qn, respectively,
satisfy the following linear recurrence: for n ∈ N,

pn+1 = 4pn + pn−1 with p0 = 2, p
−1 = 1,

qn+1 = 4qn + qn−1 with q0 = 1, q
−1 = 0.

This yields a quickly converging sequence of rational numbers: 2

1
, 9
4
, 38
17
, . . . →

√
5. In order to

solve the linear recurrence we first factorize the characteristic polynomial

X2 − 4X − 1 = (X − α)(X − β) with α = 2 +
√
5, β = 2−

√
5.

Any solution of the recurrence xn+1 = 4xn + xn−1 is a linear combination of αn and βn.
Writing pn = aαn + bβn, we deduce in view of the starting values the linear equations

a+ b = 1 and aα+ bβ = 2,
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which yields the coefficients a = b = 1

2
. Thus, we obtain the explicit representation

pn =
1

2
((2 +

√
5)n + (2−

√
5)n) =

1

2
F3n + F3n−1;

the latter identity follows easily by induction from Binet’s formula for the Fibonacci numbers,

Fn =
1√
5
(φn − (−φ)−n). (2.1)

By the same reasoning for the sequence of denominators qn we find

qn =
1

2
√
5
((2 +

√
5)n − (2−

√
5)n) =

1

2
F3n.

Hence,

rn =
pn

qn
= 1 + 2

F3n−1

F3n

=
F3n+1 + F3n−1

F3n

.

Alternatively, one can obtain a representation in terms of values of Chebyshev poylnomials.
(For this and the above expression in terms of Fibonacci numbers we refer to Sloane’s On-Line

Encyclopedia of Integer Sequences at www.research.att.com/njas/sequences/.) It remains
to estimate the speed of convergence. Taking Binet’s formula (2.1) into account, a short
computation leads to

rn = 1 + 2
φ3n−1 + (−1)3nφ−3n+1

φ3n + (−1)3n−1φ−3n
= 1 + 2φ−1 +O(φ−6n) =

√
5 +O(φ−6n).

�

Theorem 2.2. For any n ∈ N, let

an =
3

2rn
, bn =

20

3rn
, and cn =

41

6rn
,

where the rn are non-zero rational numbers defined in Theorem 2.1. Then the numbers

an, bn, cn define a rational right triangle of area 1 +O(φ−6n).

Proof. Since an, bn, cn are a non-zero rational multiple of Fibonacci’s triple (1.1), these numbers
yield a rational right triangle. In view of Theorem 2.1 its area is easily computed as

1

2
anbn =

5

r2n
=

5

(
√
5 +O(φ−6n))2

= 1 +O(φ−6n).

�

Remark. Consider the amplitude of light which is a physical bound for the size of objects which

human eyes can see, or the Planck length lP ≈ 1.616 . . . × 10−35 meter which is the smallest

size of objects in quantum mechanics. We can construct a rational triangle having an area

which differs from one by a quantity that the naked eye cannot see. To have an approximation

error less than the Planck constant we would have to choose only n ≥ 28.

We cannot resist to illustrate the above construction with examples. For n = 10 we obtain
the sides a10 =

208 010

310 083
, b10 =

8 320 400

2 790 747
, c10 =

208 010

68 067
, giving the area

5

r2
10

= 5

(

F30

F31 + F29

)2

=
865 363 202 000

865 363 202 001
= 0. 99999 99999 98844 41585 . . . .
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For n = 11 we get the sides a11 =
5 286 867

7 881 196
, b11 = 17 622 890

5 910 897
, c11 = 72 253 849

23 643 588
, giving the area

5

r2
11

= 5

(

F33

F34 + F32

)2

=
15528 312 597 605

15 528 312 597 604
= 1. 00000 00000 00064 39850 . . . .

Of course, we may argue with
√
n2 + 1 = [n, 2n] and

√
n2 + 2 = [n, n, 2n] or other continued

fraction expansions for irrationalities in order to obtain rational right triangles with areas as
close to an arbitrarily given positive integer as we want, however, we leave this task to the
interested reader.
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