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ABSTRACT. We derive series expansions for the Jacobi theta functions 0;(q), j = 2, 3,4, and
for 03(z,q), all in terms of a certain sequence of sparse binomial-type polynomials. As conse-
quences we obtain series identities involving second-order recurrence sequences and Chebyshev
polynomials of the first kind.

1. INTRODUCTION

The Jacobi theta functions belong to the most important special functions in mathematics,
with applications in analysis, number theory, and combinatorics. They are four interrelated
quasi-doubly periodic functions in the complex variable z and also depend on the nome ¢,
l¢| < 1. For instance,

[e.e] [ee]
05(z,q) = Z gV e =142 Z i cos(2nz); (1.1)
n=1

see, e.g., [5, Ch. 20] or [1, p. 508ff.] for this and the other functions. Of special interest are
these functions at z = 0, namely
(note that 6,1(0,¢q) = 0). In particular, we have

o L o
ba(q) =2 g2 =2g1/4 N g, (1.2)
n=0 n=1
O3(0) =1+23 ¢",  Oalg) =1+2> (-1)"¢"". (1.3)
n=1 n=1

These last functions are especially useful in additive number theory. For example, by equating
coefficients of powers of ¢ it is easy to see that

03(0)* = > ri(n)g",
n=0

where r(n) is the number of ways n can be written as a sum of k squares; see, e.g., [1, p. 506]
for this and other similar relations.

It is the purpose of this paper to derive infinite series expansions for 05(q), 03(q) and 04(q),
as well as for 65(z, q), all in terms of the special polynomials
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o= 3 ()00 (14)

k=0

Recently the authors [2] defined and used these polynomials in the following graph theo-
retical setting. An independent set of vertices of a (finite simple) graph is a subset of the
vertices of the graph, no two of which are joined by an edge. Consider the complete graph K,
and assume that every edge may be deleted independently with equal probability p =1 — g,
(0 < g < 1). Then the expected number of independent sets of a graph of order n is given by
fn(@)-

In [2] the authors study, among other things, the growth and asymptotic behavior of f,(x).
For instance, it was shown that for fixed real x with 0 < z < 1 we have asymptotically

1
log fn(x) ~ Fog(1/7)

The similarity of the right-hand side of (1.4) to the usual binomial expansion, and the special
form of the exponents of z, make the polynomials f,(z) interesting objects to study in their
own right. Therefore the authors investigated their algebraic and analytic properties in the
forthcoming paper [3]; numerous results have been obtained, including the distribution of
complex and negative real zeros.

In Section 2 we prove a lemma involving these polynomials, which will be the basis for all
further results. Section 3 contains the main results and their proofs, and in Section 4 we derive
a number of consequences.

log?n as n — oo. (1.5)

2. A Basic LEMMA

We begin our present study with an easy lemma. Throughout the remainder of this paper
we have z = ¢2 for a complex ¢ with |¢| < 1.

Lemma 2.1. For complex q and t with |q| < 1, |t| <1 we have

SN I W S
;]fn(q )t _1_th:0q (1_t> . (2.1)

Before proving this lemma, we make some remarks on the sizes of the values of f,(z). By
the definition (1.4) we have for |z| < 1,

Rl <X (1) =2 =l 22)
k=0

However, (1.5) implies that for any fixed x, 0 < x < 1, we have

1
1 1/n pr— 1 —_ = 0 =
nh_Ig)lo fn(x) exp <nh_1>rrgo - log fn(:n)> e =1, (2.3)
in contrast to the upper bound.

Proof of Lemma 2.1. Let € > 0 and suppose that |¢| <1 —¢ and [t| < 1 —¢. Since |f,(¢?)] <
fn(lg|?), the left-hand side of (2.1) is uniformly convergent by (2.3). Furthermore, since
[t/(1 —t)| < T for all t with [t| < 1 — &, where T is some finite bound, we have

=D t
1—1¢
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Therefore the right-hand side of (2.1) is also uniformly convergent, and the following operations
are legitimate. Now, using the definition (1.4), the left-hand side of (2.1) becomes

g:()ki:o <Z> P qu(k 1) 7;( >t" o)

The inner sum on the right can be rewritten as

o

SR Gy

n=

where we have used a well-known series evaluation; see, e.g., [4, (1.3)]. This, together with
(2.4), gives (2.1), valid for [t| <1 —e. Since € > 0 was arbitrary, [2] holds for all |t| < 1. O

3. THE MAIN RESULTS

We are now ready to state and prove the following representations.

Theorem 3.1. For |q| < 1 we have
32 ful@®) = 2+ 47V 40a(q), (3.1)
and for |q| < %,

Z 1 _|_q n+1 fn( ) =1 +63(Q)7 (32)
E: Wuh()—1+&w) (3.3)

Proof. The identity (3.1) follows immediately from (2.1) and (1.2), by setting ¢t = % Next, let
t ==4q/(1£¢q). Then
t + d 1 1+
T
and |g| < § implies |t| < 1. So (2.1), together with both parts of (1.3), immediately gives (3.2)
and (3.3). O

Next, we use the same method as before and derive a representation of 03(z,q), for z € R,
in terms of the polynomials f,(¢?). The following result can be seen as representative of the
other theta functions 6;(z, ¢) which, by the way, can all be written in terms of 65(z, q).

Theorem 3.2. For |g| < % and z € R we have

00 iz n+1 —2iz n+1 2
—92i qe 2 qe fnlq®) _
> ( () e (f) ) Ty T lthed. 84

n=0

Proof. We use (2.1) with

qe:l:2iz

T 1t get2iz

FEBRUARY 2012 7



THE FIBONACCI QUARTERLY

Since z € R and |q| < %, we see that |t| < 1 so that (2.1) applies. Also, in the analogy to the
proof of (3.2) and (3.3) we have

¢ +2iz 1 +2iz
1+ qe and T3 + ge
We then get with (2.1),
:|:2iz)n k2 :|:2k
— ZZ
Z f” 1 _|_ qe:l:2zz n+1 =1+ Z q (35)
Finally, we add (3.5) for “+” and for “—”; then (1.1) immediately gives (3.4). O

4. SOME CONSEQUENCES

Theorem 3.2 is particularly suitable for deriving identities that involve second-order linear
recurrence sequences. The following is a first example.

Corollary 1. Let F,, be the nth Fibonacci number (with Fo = 0,F; =1). Then

(e}

—Z P g () = YDk (4.1)

k=0

Proof. We use (3.4) with z = /4 and ¢ = i/+/5. Then e*2? = +i, and we get

qe:I:2iz B _1 1+ \/g
1+ ge*2iz 2 2 '
Now, using the well-known Binet formula for the Fibonacci numbers, namely
1 n B n
= (59 - (59)) (42

we easily see that the left-hand side of (3.4) gives twice the left-hand side of (4.1). On the
other hand, we use that fact that

0, n odd,

cos(2nz) = cos(%) = {(_1)167 n = 2k.

Hence, by (1.1) we have

s ’l (2k)2 > k k‘2
1+93(§,% = Z: <7> :22(—1) 257,

= k=0

which completes the proof. O

Apart from the occurrence of the Fibonacci numbers, the identity (4.1) is interesting because
of the fact that the right-hand series converges extremely quickly, while the left-hand series
does so very slowly. In fact, adding the left-hand side up to n = 50 gives an error of about
0.0035, and up to n = 100 the error is still about 0.5 - 1076.

This last proof shows that a large number of similar identities can be obtained from (4.1)
by choosing different values of z and g, where z = 7/4 is particularly convenient, while z = 0
recovers (3.2). We now state, without a detailed proof, another identity which is obtained by
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taking z = 7w/4. Here we choose ¢ = 1/4/10; in this case the analogue of the Binet formula
(4.2) is
1
= —= (L +V10)" — (1 = iV10)")
wi= s ) )
and the sequence u,, satisfies the recurrence
Up = 2Up_1 — 1lu,_o, with wug=0,u; =2,

so that the next few terms are 4, —14, —72,10,812,1514, —5904, . . ..

Corollary 2. Let the sequence {u,} be defined as above. Then

53 %fn(%)) =3 (~1)* 100" (4.3)
n=0 k=0

A final application of (3.4) involves the Chebyshev polynomials of the first kind, T, (x),
which can be defined by

[n/2] ; .
T, (z) := cos(ncos ! z) = g Z:O % (n j_ j) (2x)"~2,; (4.4)

see, e.g., [5, Ch. 18].

Corollary 3. Suppose that the real numbers q and z are related through the identity ¢ =
—1/(2cos2z), with |q| < 1. Then

2 Z(_l)n+1T2n+1(5_ql)fn(q2) =1+03(2,9). (4.5)
n=0
Proof. We use (3.4) with

-1 -1
ez 4 e=2iz  2c0s(22)

q= (4.6)

Then it is easy to see that
+2iz
ge __tdiz
— = —¢
1+ qe:l:2zz
and the expression in square brackets in (3.4) becomes

(—1) ! (e(2n+1)2iz I e—(2n+1)2iz) = (=1)""2cos((2n + 1)2z)

= (=" 2T 41 (55),

where the second equality follows from (4.4) and (4.6). With (3.4) this immediately gives
(4.5). 0

)
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