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Abstract. For the bivariate Fibonacci and Lucas polynomials with their subscripts being
of geometric series, we establish twelve interrelations and recurrence relations among which
four equalities are the main results found recently by Kilic and Tan (2010).

1. Introduction and Preliminaries

For two indeterminate p and q subject to ∆ = p2 − 4q 6= 0, define the bivariate Fibonacci
and Lucas polynomials by

Un(p, q) = pUn−1(p, q)− qUn−2(p, q) for n > 1

with U0(p, q) = 0 and U1(p, q) = 1;

Vn(p, q) = pVn−1(p, q)− qVn−2(p, q) for n > 1

with V0(p, q) = 2 and V1(p, q) = p.

By means of the generating function method (cf. Wilf [9]), it is not hard to show the following
Binet forms

Un(p, q) =
αn − βn

α− β
and Vn(p, q) = αn + βn

where

α =
p+

√

p2 − 4q

2
and β =

p−
√

p2 − 4q

2
.

Throughout the paper, the two parameters p and q will be dropped in the notations Un :=
Un(p, q) and Vn := Vn(p, q) for the sake of brevity. Chu and Yan [3] derived several multiple
convolution formulas for these polynomials.

These two sequences extend the classical Fibonacci and Lucas numbers, respectively by
Un(1,−1) = Fn and Vn(1,−1) = Ln. For the latter, there exist the following curious relations

F3n+1 = 5F 3
3n − F3n ,

L4n+1 = L4
4n − 4L2

4n + 2,

F5n+1 = 25F 5
5n − 25F 3

5n + 5F5n ,

L6n+1 = L6
6n − 6L4

6n + 9L2
6n − 2;

where the first one was a problem proposed by Filipponi and solved by Terr [6]; while the
remaining three relations appeared in the comment by Klamkin [6].
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Inspired by these equalities, Kilic and Tan [7, 8] find interrelations and recurrence relations
for Um and Vm when the subscripts {m} are of geometric series {kn}. Their main results are
three recurrence relations of the first order for Ukn and Vkn plus one polynomial expression of
Vkn in terms of Ukn (cf. Corollaries 7–10), that are derived by combining the binomial theorem
with the following two fundamental binomial relations, which can be found in Carlitz [2,
Page 23] and Comtet [4, Section 4.9], respectively:

xm − ym

x− y
=

∑

0≤k<m/2

(−1)k
(m− k − 1

k

)

(xy)k(x+ y)m−2k−1, (1)

xm + ym =
∑

0≤k≤m/2

(−1)k
m

m− k

(

m− k
k

)

(xy)k(x+ y)m−2k. (2)

The purpose of this paper is to show that these polynomial identities can be utilized to
investigate systematically the interrelations concerning Ukn and Vkn . In the next section, by
examining these two identities carefully, we find that they contain not only the aforementioned
four relations due to Kilic and Tan [7, 8] as very particular instances, but also four other
similar interrelations. Furthermore, we shall establish, in the third section, four quite unusual
interrelations for Ukn and Vkn by employing Dougall’s Theorem for terminating well–poised

4F3-series in the evaluation of connection coefficients. Finally, the paper will end up with
a collection of 22 curious polynomial identities involving the classical Fibonacci and Lucas
numbers. In order to guarantee the accuracy of computations, all the equalities appearing in
this paper have been verified through Mathematica commands.

2. Eight Easier Relations Among Ukn and Vkn

Letting x = αn and y = βn in (1) and (2), we get directly the following relations for Umn

and Vmn:

Umn = Un

∑

0≤k<m/2

(−qn)k
(

m− k − 1
k

)

V m−2k−1
n , (3)

Vmn =
∑

0≤k≤m/2

(−qn)k
m

m− k

(

m− k
k

)

V m−2k
n . (4)

According to the parity of m, they can explicitly be displayed in the following lemma as four
expressions in terms of Vn.

Lemma 1 (m ∈ N0 and n ∈ N0).

U2mn = Un

m
∑

k=1

(−qn)m−k
(

m+ k − 1
2k − 1

)

V 2k−1
n , (5)

U2mn+n = Un

m
∑

k=0

(−qn)m−k
(

m+ k
2k

)

V 2k
n , (6)

V2mn =

m
∑

k=0

(−qn)m−k 2m

m+ k

(

m+ k
2k

)

V 2k
n , (7)

V2mn+n =

m
∑

k=0

(−qn)m−k 1 + 2m

1 +m+ k

(

1 +m+ k
1 + 2k

)

V 1+2k
n . (8)
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Instead, there exist also four companion expressions in terms of Un.

Lemma 2 (m ∈ N0 and n ∈ N0).

U2mn = Vn

m
∑

k=1

qn(m−k)
(

m+ k − 1
2k − 1

)

∆k−1U2k−1
n , (9)

U2mn+n =
m
∑

k=0

qn(m−k) 1 + 2m

1 +m+ k

(

1 +m+ k
1 + 2k

)

∆kU2k+1
n , (10)

V2mn =
m
∑

k=0

qn(m−k) 2m

m+ k

(

m+ k
2k

)

∆kU2k
n , (11)

V2mn+n = Vn

m
∑

k=0

qn(m−k)
(

m+ k
2k

)

∆kU2k
n . (12)

They can be deduced from (1) and (2) in the following manner:

Eq(9) : m → 2m, x → αn and y → −βn in (1),

Eq(10) : m → 2m+ 1, x → αn and y → −βn in (2),

Eq(11) : m → 2m, x → αn and y → −βn in (2),

Eq(12) : m → 2m+ 1, x → αn and y → −βn in (1).

Among these eight relations just displayed, four of them labeled with (7), (8), (10), and (11)
have been obtained by Kilic and Tan [8, Lemma 1]. Both Lemmas 1 and 2 are quite useful to
derive expressions between the subsequences of Ukn and Vkn with the subscripts {kn} being a
geometric series.

Proposition 3 (n → kn and m → k/2 in (9) with k being even).

Ukn+1 = Vkn

k/2
∑

i=1

qk
n(k/2−i)

(

i− 1 + k
2

2i− 1

)

∆i−1U2i−1
kn .

Proposition 4 (n → kn and m → k/2 in (5) with k being even).

Ukn+1 = Ukn

k/2
∑

i=1

(−qk
n

)k/2−i
(

i− 1 + k
2

2i− 1

)

V 2i−1
kn .

Proposition 5 (n → kn and m → (k − 1)/2 in (6) with k being odd).

Ukn+1 = Ukn

(k−1)/2
∑

i=0

(−qk
n

)(k−1−2i)/2
(

(k − 1)/2 + i
2i

)

V 2i
kn .

Proposition 6 (n → kn and m → (k − 1)/2 in (12) with k being odd).

Vkn+1 = Vkn

(k−1)/2
∑

i=0

qk
n(k−1−2i)/2

(

(k − 1)/2 + i
2i

)

∆iU2i
kn .

As immediate consequences, we can also recover the following corollaries, that are the main
theorems due to Kilic and Tan [8, Theorems 1–4], who found them by manipulating the
binomial expansions for Uk

kn and V k
kn .
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Corollary 7 (n → kn and m → k/2 in (11) with k being even).

Vkn+1 =

k/2
∑

i=0

qk
n(k/2−i) 2k

k + 2i

(k/2 + i
2i

)

∆iU2i
kn .

Corollary 8 (n → kn and m → k/2 in (7) with k being even).

Vkn+1 =

k/2
∑

i=0

(−qk
n

)k/2−i 2k

k + 2i

(k/2 + i
2i

)

V 2i
kn .

Corollary 9 (n → kn and m → (k − 1)/2 in (10) with k being odd).

Ukn+1 =

(k−1)/2
∑

i=0

qk
n(k−1−2i)/2 2k

1 + k + 2i

(

i+ k+1
2

1 + 2i

)

∆iU1+2i
kn .

Corollary 10 (n → kn and m → (k − 1)/2 in (8) with k being odd).

Vkn+1 =

(k−1)/2
∑

i=0

(−qk
n

)(k−1−2i)/2 2k

k + 2i+ 1

(

(k + 1)/2 + i
2i+ 1

)

V 2i+1
kn .

We remark that the special case p = −q = 1 of Corollary 9 was previously obtained by
Filipponi [5, Proposition 4]

Fkn+1 =

(k−1)/2
∑

i=0

(−1)i+(k−1)/2 2k · 5i

1 + k + 2i

(

i+ k+1
2

1 + 2i

)

F 1+2i
kn . (13)

3. Four Further Relations Among Ukn and Vkn

By means of binomial expansions for Uk
kn and V k

kn as done in Kilic and Tan [8], we shall
establish in this section, four further relations between Ukn and Vkn . In order to evaluate the
binomial sums of connection coefficients, we shall utilize Dougall’s Theorem [1, Section 4.4,
pp. 27] for terminating well-poised series

(1 + a)n
(1 + a− c)n

= 4F3

[

a, 1 + a/2, c, −n
a/2, 1 + a− c, 1 + a+ n

∣

∣

∣
− 1

]

=

n
∑

j=0

a+ 2j

a

(a)j(c)j(−n)j
j!(1 + a− c)j(1 + a+ n)j

(−1)j
(14)

where the shifted factorial is given by

(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1) with n ∈ N

and the classical hypergeometric series reads as

1+`F`

[

a0, a1, . . . , a`
c1, . . . , c`

∣

∣

∣
x

]

=
∑

k≥0

(a0)k(a1)k · · · (a`)k
k!(c1)k · · · (c`)k

xk.
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According to the binomial theorem, we can manipulate V k
kn as

V k
kn = (αkn + βkn)k =

k
∑

j=0

(

k
j

)

αjknβ(k−j)kn

= χk ≡ 0 (mod 2)
(

k
k/2

)

qk
n+1/2 +

∑

0≤j<k/2

(

k
j

)

qjk
n

V(k−2j)kn .

(15)

When k is even, the last relation can be restated as

V k
kn = Vkn+1 +

( k
k/2

)

qk
n+1/2 +

k/2−1
∑

j=1

( k
j

)

qjk
n

V(k−2j)kn . (16)

Applying the relation (11) to the last V(k−2j)kn and then simplifying the double sum expression,
we get

V k
kn = Vkn+1 +

(

k
k/2

)

qk
n+1/2 + 2

k/2−1
∑

j=1

(

k
j

)

qk
n+1/2

+

k/2−1
∑

j=1

(

k
j

)

k/2−j
∑

i=1

∆iU2i
knq

kn(k/2−i)
( k

2 − j + i
2i

) k − 2j
k
2 − j + i

= Vkn+1 + (2k − 2)qk
n+1/2

+

k/2−1
∑

i=1

∆iU2i
knq

kn(k/2−i)

k/2−i
∑

j=1

( k
j

)( k
2 − j + i

2i

) k − 2j
k
2 − j + i

.

Observing that (14) can be used to evaluate the following binomial sum

k/2−i
∑

j=0

(

k
j

)( k
2 − j + i

2i

) k − 2j
k
2 − j + i

=
2k

2i+ k

( i+ k/2
2i

)

k/2−i
∑

j=0

k − 2j

k

(−k)j(i− k/2)j
j!(1 − i− k/2)j

(−1)j

=
2k

2i+ k

(

i+ k/2
2i

)

3F2

[

−k, 1− k/2, i− k/2
−k/2, 1− i− k/2

∣

∣

∣
− 1

]

=
2k

2i+ k

(

i+ k/2
2i

)(i+ k/2)k/2−i

(i+ 1/2)k/2−i
= 2k−2i

( k
2
i

)

we derive the following expression of Vkn+1 in terms of Ukn , which may be considered as a
variant of Corollary 7.

Theorem 11 (n, k ∈ N with k being even).

Vkn+1 = V k
kn −

k/2−1
∑

i=0

∆iU2i
knq

kn(k/2−i)

{

2k−2i
( k

2
i

)

−
2k

k + 2i

( k
2 + i
2i

)

}

.
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When k is odd, the equation (15) can be reformulated as

V k
kn = Vkn+1 +

k−1

2
∑

j=1

( k
j

)

qjk
n

V(k−2j)kn . (17)

Applying (12) to the last V(k−2j)kn , we get the double sum expression

V k
kn = Vkn+1 + Vkn

(k−3)/2
∑

i=0

qk
n(k−1

2
−i)∆iU2i

kn

k−1

2
−i

∑

j=1

(

k
j

)( k−1
2 − j + i

2i

)

.

The last binomial sum can be evaluated by (14) as follows:

k−1

2
−i

∑

j=0

( k
j

)( k−1
2 − j + i

2i

)

=
( k−1

2 + i
2i

)

k−1

2
−i

∑

j=0

(−1)j
(−k)j(i−

k−1
2 )j

j!(−i− k−1
2 )j

=
( k−1

2 + i
2i

)

2F1

[

−k, i− k−1
2

−i− k−1
2

∣

∣

∣
− 1

]

=
( k−1

2 + i
2i

)(i+ k+1
2 )k−1

2
−i

(i+ 1
2)k−1

2
−i

= 2k−2i−1
( k−1

2
i

)

.

This yields the following polynomial representation, which differs substantially from Proposi-
tion 6.

Theorem 12 (n, k ∈ N with k being odd).

Vkn+1 = V k
kn − Vkn

(k−3)/2
∑

i=0

∆iqk
n(k−1

2
−i)U2i

kn

{

2k−2i−1
( k−1

2
i

)

−
( k−1

2 + i
2i

)

}

.

Similarly, Uk
kn can be expanded by means of the binomial theorem

Uk
kn =

{αkn − βkn

α− β

}k
=

1

∆k/2

k
∑

j=0

(−1)j
(

k
j

)

α(k−j)(kn)βjkn

=
∑

0≤j≤k/2

(−1)j
( k
j

)α(k−j)knβjkn + (−1)kαjknβ(k−j)kn

(1 + χ(k = 2j))∆k/2
.

(18)

When k is an even integer, the last equality can be rewritten as

∆k/2Uk
kn = Vkn+1 + (−qk

n

)k/2
( k
k/2

)

+

k/2−1
∑

j=1

(−qk
n

)j
( k
j

)

V(k−2j)kn . (19)
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Applying (7) to the last V(k−2j)kn gives rise to the double sum

∆k/2Uk
kn = Vkn+1 + (−qk

n

)k/2
(

k
k/2

)

+ 2

k/2−1
∑

j=1

(

k
j

)

(−qk
n

)k/2

+

k/2−1
∑

j=1

(

k
j

)

k/2−j
∑

i=1

(−qk
n

)k/2−i
( k

2 + i− j
2i

) k − 2j
k
2 + i− j

= Vkn+1 + (2k − 2)(−qk
n

)k/2

+

k/2−1
∑

i=1

(−qk
n

)k/2−i

k/2−i
∑

j=1

(

k
j

)( k
2 + i− j

2i

) k − 2j
k
2 + i− j

.

By carrying out the same procedure as that for Theorem 11, we get the following counterpart
of Corollary 8.

Theorem 13 (n, k ∈ N with k being even).

Vkn+1 = ∆k/2Uk
kn −

k/2−1
∑

i=0

(−qk
n

)k/2−iV 2i
kn

{

2k−2i
( k

2
i

)

−
2k

k + 2i

( k
2 + i
2i

)

}

.

When k is an odd integer, the equation (18) reads analogously as

Uk
kn =

1

∆(k−1)/2

{

Ukn+1 +

k−1

2
∑

j=1

(−qk
n

)j
(

k
j

)

U(k−2j)kn

}

. (20)

According to (6), we have the equality

U(k−2j)kn = Ukn

k−1

2
−j

∑

i=0

(−qk
n

)
k−1

2
−j−i

( k−1
2 − j + i

2i

)

V 2i
kn

which leads to the double sum expression

Uk
kn =

1

∆(k−1)/2

{

Ukn+1 + Ukn

(k−3)/2
∑

i=0

(−qk
n

)
k−1

2
−iV 2i

kn

k−1

2
−i

∑

j=1

(

k
j

)( k−1
2 − j + i

2i

)

}

.

Following the same derivation as that for Theorem 12, we find the following interesting formula,
which is substantially different from Proposition 5.

Theorem 14 (n, k ∈ N with k being odd).

Ukn+1 = ∆(k−1)/2Uk
kn − Ukn

(k−3)/2
∑

i=0

(−qk
n

)
k−1

2
−iV 2i

kn

{

2k−2i−1
( k−1

2
i

)

−
( k−1

2 + i
2i

)

}

.

4. Curious Relations for Fibonacci and Lucas Numbers

When p = −q = 1, the formulas displayed in Propositions 3–6, Corollaries 7–10, and
Theorems 11–14 become polynomial identities for the classical Fibonacci and Lucas numbers.
For k = 3, 4, 5, 6, the corresponding curious relations including those shown in the introduction
are collected as follows, where we suppose n ∈ N and exclude the relations corresponding to
k = 2 due to their trivialness.
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F3n+1 = 5F 3
3n − 3F3n , Corollary 9: k = 3; (21a)

F3n+1 = F3n
{

L2
3n + 1

}

, Proposition 5: k = 3; (21b)

L3n+1 = L3
3n + 3L3n , Corollary 10: k = 3; (21c)

L3n+1 = L3n
{

5F 2
3n − 1

}

, Proposition 6: k = 3. (21d)

We remark that both recurrence relations (21a) and (21c) of the first order can also be derived
from Theorem 14 and Theorem 12, respectively.

F4n+1 = L4n
{

5F 3
4n + 2F4n

}

, Proposition 3: k = 4; (22a)

F4n+1 = F4n
{

L3
4n − 2L4n

}

, Proposition 4: k = 4; (22b)

L4n+1 = 25F 4
4n + 20F 2

4n + 2, Corollary 7: k = 4; (22c)

L4n+1 = L4
4n − 4L2

4n + 2, Corollary 8: k = 4; (22d)

L4n+1 = L4
4n − 20F 2

4n − 14, Theorem 11: k = 4; (22e)

L4n+1 = 25F 4
4n + 4L2

4n − 14, Theorem 13: k = 4. (22f)

F5n+1 = F5n
{

L4
5n + 3L2

5n + 1
}

, Proposition 5: k = 5; (23a)

F5n+1 = 25F 5
5n − 25F 3

5n + 5F5n , Corollary 9: k = 5; (23b)

F5n+1 = 25F 5
5n − 5F5nL

2
5n + 15F5n , Theorem 14: k = 5; (23c)

L5n+1 = L5n
{

25F 4
5n − 15F 2

5n + 1
}

, Proposition 6: k = 5; (23d)

L5n+1 = L5
5n + 5L3

5n + 5L5n , Corollary 10: k = 5; (23e)

L5n+1 = L5
5n + 25L5nF

2
5n − 15L5n , Theorem 12: k = 5. (23f)

F6n+1 = L6n
{

25F 5
6n + 20F 3

6n + 3F6n
}

, Proposition 3: k = 6; (24a)

F6n+1 = F6n
{

L5
6n − 4L3

6n + 3L6n
}

, Proposition 4: k = 6; (24b)

L6n+1 = 125F 6
6n + 150F 4

6n + 45F 2
6n + 2, Corollary 7: k = 6; (24c)

L6n+1 = L6
6n − 6L4

6n + 9L2
6n − 2, Corollary 8: k = 6; (24d)

L6n+1 = L6
6n − 150F 4

6n − 195F 2
6n − 62, Theorem 11: k = 6; (24e)

L6n+1 = 125F 6
6n + 6L4

6n − 39L2
6n + 62, Theorem 13: k = 6. (24f)
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