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Abstract. In this paper we consider a generalized Fibonacci type second order linear recur-
rence {Un}. We derive explicit formulas for the squares of generalized Fibonacci numbers,
U

2
n
, and the products of consecutive generalized Fibonacci numbers, UnUn+1, by using some

properties of the generalized tribonacci triangle.

1. Introduction

For real numbers a and b, the generalized Fibonacci sequence {Un} is defined by

U0 = 0, U1 = 1 and Un+1 = aUn + bUn−1 (n ≥ 1).

If a = b = 1, then Un = Fn is the classical Fibonacci number. It is well-known that the
Fibonacci numbers can be derived by summing elements on the rising diagonal lines in Pascal’s
triangle

Fn+1 =

bn/2c
∑

i=1

(

n− i

i

)

(n ≥ 0),

where bxc is the largest integer not exceeding x, see [3, chapter 12]. For the generalized
Fibonacci number Un, we have the following well-known expansion, see [5],

Un+1 =

bn/2c
∑

i=0

(

n− i

i

)

an−2ibi (n ≥ 0).

In 1977, Alladi and Hoggatt [1] constructed the tribonacci triangle, see Figure 1, to derive
the expansion of the tribonacci numbers.

0 1 2 3 4 5 6 7 · · ·
0 1
1 1 1
2 1 3 1
3 1 5 5 1
4 1 7 13 7 1
5 1 9 25 25 9 1
6 1 11 41 63 41 11 1
7 1 13 61 129 129 61 13 1
...

...
Figure 1 : Tribonacci triangle.
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If we use B(n, i) to denote the element in the nth row and ith column of the tribonacci
triangle, then we may obtain:

B(n+ 1, i) = B(n, i) +B(n, i− 1) +B(n− 1, i − 1), (1.1)

where B(n, 0) = B(n, n) = 1. Alladi and Hoggatt showed that the sum of elements on the
rising diagonal lines in the tribonacci triangle is the tribonacci number tn, that is,

tn+1 =

bn/2c
∑

i=0

B(n− i, i), (1.2)

where t0 = 0, t1 = t2 = 1 and tn+2 = tn+1 + tn + tn−1.
P. Barry [2, Example 16] proved that

B(n, i) =

i
∑

j=0

(

i

j

)(

n− j

i

)

. (1.3)

By using the identity (1.3), the identity (1.2) can be written as

tn+1 =

bn/2c
∑

i=0

i
∑

j=0

(

i

j

)(

n− i− j

i

)

.

The objective here is to find connections between a generalized tribonacci triangle and a
generalized Fibonacci sequence. First, we state some formulas for the numbers F 2

n and FnFn+1

suggested from the tribonacci triangle. Next, we define a generalized tribonacci triangle and
derive the formulas of the numbers U2

n and UnUn+1. Their proofs will be given in the last
section.

2. Skipping Rows in the Tribonacci Triangle

We delete the odd-numbered rows in the tribonacci triangle to obtain Figure 2 as follows:

0 1 2 3 4 5 6 7 8 9 10 · · ·
0 1
2 1 3 1
4 1 7 13 7 1
6 1 11 41 63 41 11 1
8 1 15 85 231 321 231 85 15 1
10 1 19 145 575 1289 1683 1289 575 145 19 1
12 1 23 221 1159 3649 7183 · · ·
...

...
Figure 2.

Observe that the sums of elements on each rising diagonal line in Figure 2 give the squared
Fibonacci numbers, F 2

n , namely

F 2
1 = 1, F 2

2 = 1, F 2
3 = 1 + 3 = 22, F 2

4 = 1 + 7 + 1 = 32, F 2
5 = 1 + 11 + 13 = 52,

F 2
6 = 1 + 15 + 41 + 7 = 82, F 2

7 = 1 + 19 + 85 + 63 + 1 = 132, . . . .
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Using the identity (1.3), we conjecture the following expansion

F 2
n+1 =

b2n/3c
∑

i=0

B(2n− 2i, i) =

b2n/3c
∑

i=0

i
∑

j=0

(

i

j

)(

2n− 2i− j

i

)

. (2.1)

Next, we delete the even-numbered rows in the tribonacci triangle to obtain Figure 3.

0 1 2 3 4 5 6 7 8 9 10 11 · · ·
1 1 1
3 1 5 5 1
5 1 9 25 25 9 1
7 1 13 61 129 129 61 13
9 1 17 113 377 681 681 377 113 17 1
11 1 21 181 833 2241 3653 3653 2241 833 181 21 1
13 1 25 265 1561 5641 13073 · · ·
...

...
Figure 3.

Similarly, sums of elements on each rising diagonal line in Figure 3 would appear to give
the products of the consecutive Fibonacci numbers, FnFn+1, leading to the conjecture:

FnFn+1 =

b(2n−1)/3c
∑

i=0

B(2n− 2i− 1, i) =

b(2n−1)/3c
∑

i=0

i
∑

j=0

(

i

j

)(

2n− 2i− j − 1

i

)

. (2.2)

We will in fact prove generalized versions of (2.1) and (2.2) in the following section.

3. Main Results

Definition 3.1. Let n ∈ Z. For any non-negative integer i, let

T (n, i) =

{

∑i
j=0

(

i
j

)(

n−j
i

)

an−2jbi+j ; 0 ≤ i ≤ n

0 ; otherwise
.

For 0 < i < n, we see that all the terms in the summation of T (n, i) are zero when
j > min{n− i, i}.

Definition 3.2. The generalized tribonacci triangle is defined as follows:

0 1 2 3 4 5 6 · · · n · · ·
0 T (0, 0)
1 T (1, 0) T (1, 1)
2 T (2, 0) T (2, 1) T (2, 2)
3 T (3, 0) T (3, 1) T (3, 2) T (3, 3)
4 T (4, 0) T (4, 1) T (4, 2) T (4, 3) T (4, 4)
5 T (5, 0) T (5, 1) T (5, 2) T (5, 3) T (5, 4) T (5, 5)
6 T (6, 0) T (6, 1) T (6, 2) T (6, 3) T (6, 4) T (6, 5) T (6, 6)
...

...

n T (n, 0) T (n, 1) T (n, 2) · · · T (n, n)
...

...
The generalized tribonacci triangle.
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It is easy to see that for a = b = 1, the generalized tribonacci triangle is indeed the
tribonacci triangle. Applying the same idea mentioned in Section 2 (i.e. deleting odd- and
even-numbered rows) to the generalized tribonacci triangle, we anticipate the following main
results, whose proofs will be given in the last section.

Theorem 3.3. For any non-negative integer n, we have

(1) U2
n+1 =

b2n/3c
∑

i=0

T (2n − 2i, i) =

b2n/3c
∑

i=0

i
∑

j=0

(

i
j

) (

2n−2i−j
i

)

a2(n−i−j)bi+j.

(2) UnUn+1 =

b(2n−1)/3c
∑

i=0

T (2n− 2i− 1, i) =

b(2n−1)/3c
∑

i=0

i
∑

j=0

(

i
j

) (

2n−2i−j−1
i

)

a2(n−i−j)−1bi+j.

4. Proof of Theorem 3.3

We first provide two lemmas which will be used in the proof of Theorem 3.3.

Lemma 4.1. Let n ∈ N. Then

(1) U2
n+2 = (a2 + b)U2

n+1 + (a2b+ b2)U2
n − b3U2

n−1.

(2) Un+1Un+2 = (a2 + b)UnUn+1 + (a2b+ b2)Un−1Un − b3Un−2Un−1.

Proof. We only give a proof for the first part as that of the second is similar. By the definition
of Un, we get

U2
n+2 = (aUn+1 + bUn)

2

= a2U2
n+1 + 2abUn+1Un + b2U2

n

= a2U2
n+1 + abUn(aUn + bUn−1) + bUn+1(Un+1 − bUn−1) + b2U2

n

= (a2 + b)U2
n+1 + (a2b+ b2)U2

n + b2Un−1(aUn − Un+1)

= (a2 + b)U2
n+1 + (a2b+ b2)U2

n − b3U2
n−1,

as desired. �

Lemma 4.2. Let n ∈ N. For non-negative integer i ≤ n, we get that

T (n, i) = aT (n− 1, i) + abT (n− 1, i − 1) + b2T (n− 2, i− 1). (4.1)
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Proof. We see that (4.1) holds for i = 1. For 1 < i ≤ n. We have

aT (n− 1, i) + abT (n− 1, i− 1) + b2T (n− 2, i− 1)

= a

i
∑

j=0

(

i
j

) (

n−j−1
i

)

an−2j−1bi+j + ab

i−1
∑

j=0

(

i−1
j

) (

n−j−1
i−1

)

an−2j−1bi+j−1

+ b2
i−1
∑

j=0

(

i−1
j

) (

n−j−2
i−1

)

an−2j−2bi+j−1

=
(

n−1
i

)

anbi + a

i−1
∑

j=1

(

i
j

) (

n−j−1
i

)

an−2j−1bi+j +
(

n−i−1
i

)

an−2ib2i

+
(

n−1
i−1

)

anbi + ab

i−1
∑

j=1

(

i−1
j

) (

n−j−1
i−1

)

an−2j−1bi+j−1

+ b2
i−2
∑

j=0

(

i−1
j

) (

n−j−2
i−1

)

an−2j−2bi+j−1 +
(

n−i−1
i−1

)

an−2ib2i

= ( ni ) a
nbi +

i−1
∑

j=1

(

i
j

) (

n−j
i

)

an−2jbi+j +
(

n−i
i

)

an−2ib2i

=

i
∑

j=0

(

i
j

) (

n−j
i

)

an−2jbi+j

= T (n, i),

so (4.1) is always valid. �

Note that if we take a = b = 1 in the identity (1) of the Lemma 4.1, then we obtain the
classical Fibonacci numbers identity, namely

F 2
n+2 = 2F 2

n+1 + 2F 2
n − F 2

n−1,

which is well-known (see [4] or [3, page 92]). If we take a = b = 1 in Lemma 4.2, then the
identity (4.1) becomes the identity (1.1).

Proof of Theorem 3.3. Since the proofs of both part (1) and part (2) are quite similar, we
only give a proof for part (1). We proceed by induction on n, noting first that

U2
1 = 1, U2

2 = a2 and U2
3 = a4 + 2a2b+ b2.

Now assume the identity (1) of Theorem 3.3 holds for all integers n = 0, 1, 2, . . . , k − 1. By
Lemma 4.1(1), Lemma 4.2 and the inductive hypothesis, we get
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U2
k+1 = (a2 + b)U2

k + (a2b+ b2)U2
k−1 − b3U2

k−2

= a2T (2k − 2, 0) + a2
∑

i≥1

T (2k − 2i− 2, i) + b
∑

i≥0

T (2k − 2i− 2, i)

+ (a2b+ b2)
∑

i≥0

T (2k − 2i− 4, i) − b3
∑

i≥0

T (2k − 2i− 6, i)

= T (2k, 0) + a2
∑

i≥1

T (2k − 2i− 2, i) + bT (2k − 2, 0)

+ ab
∑

i≥1

T (2k − 2i− 3, i) + ab2
∑

i≥1

T (2k − 2i− 3, i− 1)

+ b3
∑

i≥1

T (2k − 2i− 4, i− 1)− b3
∑

i≥0

T (2k − 2i− 6, i)

+ (a2b+ b2)
∑

i≥1

T (2k − 2i− 2, i− 1)

= T (2k, 0) + a2
∑

i≥1

T (2k − 2i− 2, i) + a2b
∑

i≥1

T (2k − 2i− 2, i − 1)

+ ab2
∑

i≥1

T (2k − 2i− 3, i− 1) + ab
∑

i≥1

T (2k − 2i− 1, i − 1)

+ b2
∑

i≥1

T (2k − 2i− 2, i− 1)

= T (2k, 0) + a
∑

i≥1

T (2k − 2i− 1, i) + ab
∑

i≥1

T (2k − 2i− 1, i − 1)

+ b2
∑

i≥1

T (2k − 2i− 2, i− 1)

=
∑

i≥0

T (2k − 2i, i).

Thus (1) of Theorem 3.3 holds for n = k, thereby proving the theorem.
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