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Abstract. Using elementary methods we show that if an integer n > 2 is an exceptional
value of the equal-sum-and-product-problem, then n − 1 must be a Sophie Germain prime
number. This result gives further evidence to the sparsity conjecture for the set of exceptional
values of the equal-sum-and-product problem.

1. Introduction

The study of numbers abounds in problems which are easily understood by the non-expert,
but whose solution can remain frustratingly elusive to the most knowledgeable of experts in
the field. A good example of this type of problem can be found in the equal-sum-and-product
problem, which so far has been examined in [1] and [2]. This problem requires, for a given
integer n ≥ 2, the determination of the set of n-tuples of positive integers (x1, x2, . . . , xn)
satisfying the equation

x1 + x2 + · · ·+ xn−1 + xn = x1x2 · · · xn−1xn. (1.1)

For any given integer n ≥ 2, there always exists at least one solution to the equal-sum-and-
product problem, namely (n, 2, 1, 1 . . . , 1

︸ ︷︷ ︸

(n−2)1′s

), and this is referred to in [1] as the basic solution.

Despite its outward simplicity, there are many difficult and unanswered questions connected
with the equal-sum-and-product problem which have been identified in the references already
cited. Among these is the behavior of the counting function f(n), defined as the number of
ordered n-tuples of positive integer solutions to (1.1). In particular, does the set of exceptional
values of the equal-sum-and-product problem, defined as E = {n ∈ N\{1} : f(n) = 1}, have
an infinite number of elements? That is, do there exist infinitely many integers n ≥ 2 such
that the basic solution is the only n-tuple of positive integers satisfying (1.1)? It is conjectured
that the set of exceptional values is finite with E = {2, 3, 4, 6, 24, 114, 174, 444} representing
the complete set of exceptional values. At present, as reported in [1], extensive computer
searches of all integers less than or equal to 1010 in specific residue classes have not revealed
any new elements in E. As a consequence, it would be reasonable to expect that the set E
must be sparse, regardless of whether the cardinality of E is finite or infinite. In this note we
shall prove that, for an integer n > 2 to be an element of E, whether the cardinality of E is
finite or infinite, both n − 1 and 2n − 1 have to be prime numbers. That is, n − 1 must, by
definition, be a Sophie Germain prime number. Owing to the relative scarcity of the Sophie
Germain primes compared with the sequence of ordinary prime numbers, one can see this
result gives supporting evidence of the sparsity claim for the set E, and, moreover, provides
additional information for a more refined computer search of possible additional elements of
the set E.
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2. Preliminaries and Main Result

We begin by stating and reproving, for completeness, some preliminary results that will be
required later. In [1] it was shown that the equal-sum-and-product problem in two variables
has exactly one solution, namely, {(x1, x2) ∈ N× N : x1x2 = x1 + x2} = {(2, 2)}. We present
here an alternate proof of this fact based on a simple divisibility argument, which will later
form the basis for the proof of the main result. Suppose x1x2 = x1 + x2, for some positive
integers x1, x2. Then as x1|(x1 + x2), observe x1|x2 and so x1 ≤ x2. Similarly x2 ≤ x1.
Consequently, x1 = x2 and so x21 = 2x1 which yields that either x1 = 2 or x1 = 0, but as x1
is a positive integer we conclude x1 = x2 = 2. Next, in [1] it was also shown, via an inductive
argument, that apart from the two-variable case, the equal-sum-and-product problem in n ≥ 3
variables cannot have solutions (x1, x2, . . . , xn) in which xi ≥ 2 for all 1 ≤ i ≤ n. This can
be proved directly as follows. Assuming xi ≥ 2 for all 1 ≤ i ≤ n and after reordering and
relabeling letting xi ≥ xi+1, observe that x1x2 · · · xn ≥ 2n−1x1 while nx1 > x1 + x2 + · · ·+xn,
but as 2n−1 > n for n ≥ 3 we deduce that x1x2 · · · xn > x1 + x2 + · · · + xn, and so cannot
be a solution of (1.1). In view of these results we introduce, for notational convenience, the
following definition for classifying equal-sum-and-product solutions, according to the number
of non-unit components present within the n-tuple.

Definition 2.1. For given integers n ≥ r ≥ 2, let (x1, x2, . . . , xr;n − r) denote an n-tuple
having r non-unit components and satisfying equation (1.1), and set

Sr(n) =






(x1, x2, . . . , xr;n− r) ∈ N

n :
r∏

j=1

xj =
r∑

j=1

xj + n− r






.

In view of Definition 2.1, the basic solution for the equal-sum-and-product problem is de-
noted as (n, 2;n − 2). Now for an integer n > 2 to be an element of E, then necessarily
S2(n) = {(n, 2;n − 2)} and S3(n) = ∅. By applying this simple implication we can now prove
our main result.

Theorem 2.2. If an integer n > 2 is an exceptional value of the equal-sum-and-product
problem, then n− 1 must be a Sophie Germain prime number.

Proof. We note by inspection that the known elements n of E\{2} satisfy the property that
n− 1 is a Sophie Germain prime number, and so in what follows we shall assume there exists
another element of E with n > 444. Our first task will be to characterize the set S2(n) in
terms of the divisors of n − 1. Suppose (x1, x2;n − 2) ∈ S2(n). Then upon rearrangement of
x1 + x2 + n− 2 = x1x2, we find n− 1 = (x1 − 1)(x2 − 1). Assuming x1 ≥ x2, observe that for
a divisor d of n− 1 with d ≤

√
n− 1, we may set x2 − 1 = d and x1 − 1 = (n− 1)/d and so

S2(n) =

{(
n− 1

d
+ 1, d + 1;n − 2

)

: d|(n − 1), d ≤
√
n− 1

}

.

Consequently, the cardinality of S2(n) is equal to the number of ordered integer factorizations
of n − 1 = ab, with a ≥ b ≥ 1. Thus, S2(n) = {(n, 2;n − 2)} if and only if n − 1 is a
prime number. Next, we further establish a characterization for the set S3(n) in terms of the
preceding sets S2(·) as follows:

S3(n) =

bn−5

2
c

⋃

j+1=0

{

(x1, x2, x3;n − 3) : (x1, x2; j + 1) ∈ S2(3 + j), x3 :=
x1 + x2 + n− 3

x1x2 − 1
∈ N

}

.

(2.1)
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Suppose there exists integers x1, x2, x3 ≥ 2 such that x1x2x3 = x1+x2+x3+n−3. Solving
for x3 we find that

x3 =
x1 + x2 + n− 3

x1x2 − 1
∈ N, (2.2)

and so (x1x2 − 1)|(x1 + x2 + n − 3). Now as x3 ≥ 2, we can conclude that (x1x2 − 1) <
x1 + x2 + n − 3 and so there must exist a k ∈ N such that x1x2 − 1 = (x1 + x2 + n− 3) − k,
or equivalently after setting j = n− 3− k

x1x2 = x1 + x2 + (j + 1), (2.3)

with j+1 ≥ 0, as x1, x2 ≥ 2. Thus (x1, x2; j+1) ∈ S2(3+ j). Conversely, suppose (x1, x2; j +
1) ∈ S2(3 + j) with 3 + j < n and such that x3 := x1+x2+n−3

x1x2−1 ∈ N. Then by definition of x3
we have (x1, x2, x3;n − 3) ∈ S3(n), noting here that x3 ≥ 2, as x3 6= 1, since by definition as
x1x2 = x1 + x2 + j + 1 we have

x1 + x2 + n− 3

x1x2 − 1
=

x1 + x2 + n− 3

x1 + x2 + j

=
(x1 + x2 + j) + n− 3− j

x1 + x2 + j

= 1 +
n− 3− j

x1 + x2 + j

= 1 +
k

x1 + x2 + j
> 1.

Thus to generate S3(n), it suffices to find solutions (x1, x2; j + 1) ∈ S2(3 + j), satisfying the
divisibility condition in (2.2), and construct S3(n) as the set containing elements of the form
(x1, x2, x3;n− 3), with x3 as defined above. We now give an upper bound for the term j + 1.
Recalling for (x1, x2; j +1) ∈ S2(3 + j) that x1x2 = x1 + x2 + j +1, observe again from above

x1 + x2 + n− 3

x1x2 − 1
= 1 +

n− 3− j

x1 + x2 + j
. (2.4)

Now the right-hand side of (2.4) will not be an integer if n−3−j < x1+x2+j. Furthermore as
x1, x2 ≥ 2, observe that the previous inequality will be satisfied if and only if n−3−j < 2+2+j,
namely when j + 1 > n−5

2 . Consequently we need only examine those sets S2(3 + j), where

0 ≤ j + 1 ≤
⌊
n−5
2

⌋
. Now if an integer n > 2 is an element of E, then also S3(n) = ∅, and so

from (2.1) we deduce upon substituting the basic solution (3 + j, 2; j +1) ∈ S2(j +3) into the

expression for x3, that x3 :=
j+2+n

2j+5 6∈ N, for j + 1 = 0, . . . , bn−5
2 c. As 2j + 5 is an odd integer

the previous conclusion further implies that 2x3 6∈ N, and so observe

2x3 : =
2j + 4 + 2n

2j + 5
(2.5)

=
2j + 5 + (2n− 1)

2j + 5

= 1 +
2n − 1

2j + 5
6∈ N, (2.6)

for j + 1 = 0, . . . , bn−5
2 c. Recalling that n − 1 is prime and so n is an even integer, one finds

that bn−5
2 c = bn−4

2 − 1
2c = n−4

2 − 1, consequently 2j +5 assumes the values of all odd integers

3, 5, . . . , n − 3 ≤
√
2n− 1 < n, for j + 1 = 0, . . . , bn−5

2 c. As n − 1 clearly does not divide

60 VOLUME 50, NUMBER 1



SOPHIE GERMAIN PRIMES AND THE EQUAL-SUM-AND-PRODUCT PROBLEM

2n − 1 = 2(n − 1) + 1, we deduce from (2.6) that 2n − 1 must be a prime number and so by
definition n− 1 is a Sophie Germain prime number. �
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