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Abstract. In this paper we investigate families of primitive Pythagorean triples of the form
(a, b, c), where mc − nb = t, mc − na = t, or mb − na = t for some fixed positive coprime
integers m and n, and t a fixed nonzero integer. A few of these cases are especially interesting
since the solutions may be simply written in terms of Fibonacci and Lucas numbers.

1. Introduction

Pythagorean triples have fascinated mathematicians for over 3000 years. Due to the cel-
ebrated Pythagorean Theorem, Pythagorean triples correspond to right triangles with inte-
ger sides. In this paper we investigate some very interesting infinite families of primitive
Pythagorean triples, in which the ratio of the lengths of two specified sides approaches an
arbitrary fixed rational value m/n, where m and n are positive coprime integers. A few of
these cases are particularly interesting since the solutions may be simply written in terms of
Fibonacci and Lucas numbers.

Definition 1.1. A Pythagorean triple (PT) is a triple of positive integers (a, b, c) in which
a2 + b2 = c2.

Definition 1.2. A primitive Pythagorean triple (PPT) is a PT (a, b, c) in which gcd(a, b, c) =
1.

Definition 1.3. A well-ordered PPT is a PPT (a, b, c) in which a is odd and b is even.

It is well-known that for every PPT (a, b, c), a and b are of opposite parity. Thus, every
PPT may be made well-ordered simply by transposing a and b if necessary. From now on in
this paper, by PPT we will always mean a well-ordered PPT.

We use Π to denote the set of all (well-ordered) PPT’s. The mathematical definition of Π
is as follows:

Π = {(a, b, c) ∈ Z+3
: a2 + b2 = c2, 26 |a, 2|b, gcd(a, b, c) = 1}. (1.1)

The following theorem, due to Euclid [2], gives a very useful parametrization of all PPT’s.

Theorem 1.4. There are infinitely many PPT’s and they may all be found by the following
parametrization: Let u and v be positive coprime integers of opposite parity with u > v. Define
the integers a, b, and c as follows:

a = u2 − v2;

b = 2uv; (1.2)

c = u2 + v2.

Then (a, b, c) is a PPT.
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We omit the proof of this theorem because it can be found in numerous books, for instance,
the one cited in [3].

We will also find another type of parametrization of PPT’s useful, as illustrated by the
following theorem.

Theorem 1.5. All PPT’s may be found by the following parametrization: Let u′ and v′ be
odd positive coprime integers with u′ > v′. Define the integers a, b, and c as follows:

a = u′v′;

b = 1

2
(u′

2 − v′
2
); (1.3)

c = 1

2
(u′

2
+ v′

2
).

Then (a, b, c) is a PPT.

Once again we omit the proof of this theorem, but merely note that the following transfor-
mation takes us from parametrization (1.2) to parametrization (1.3):

u′ = u+ v; (1.4)

v′ = u− v.

The following table lists the first few PPT’s along with each type of parametrization dis-
cussed above.

u v u′ v′ a b c
2 1 3 1 3 4 5
3 2 5 1 5 12 13
4 1 5 3 15 8 17
4 3 7 1 7 24 25
5 2 7 3 21 20 29
5 4 9 1 9 40 41

Table 1. The first few PPT’s and their parametrizations.

2. Definitions and Examples

In this section we make some useful definitions regarding families of PPT’s and illustrate
with a few examples.

Definition 2.1. Let m and n be fixed positive coprime integers with m ≤ n and let t be an
arbitrary fixed integer. The type-1a primitive Pythagorean triple family (PPTF) Π(∗,m, n|t)
is the set of PPT’s (a, b, c) (with a odd and b even) such that mc− nb = t.

Definition 2.2. Let m and n be fixed positive coprime integers with m ≤ n and let t be an
arbitrary fixed integer. The type-1b PPTF Π(m, ∗, n|t) is the set of PPT’s (a, b, c) (with a odd
and b even) such that mc− na = t.

Definition 2.3. Let m and n be fixed positive coprime integers and let t be an arbitrary fixed
integer. The type-2 PPTF Π(m,n, ∗|t) is the set of PPT’s (a, b, c) (with a odd and b even)
such that mb− na = t.
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Written completely in mathematical language, we have the following definitions:

Π(∗,m, n|t) = {(a, b, c) ∈ Π : mc− nb = t}; (2.1)

Π(m, ∗, n|t) = {(a, b, c) ∈ Π : mc− na = t}; (2.2)

Π(m,n, ∗|t) = {(a, b, c) ∈ Π : mb− na = t}. (2.3)

The following two definitions are also useful.

Definition 2.4. Let m, n, and t be as before. The category-1 type-1a primitive Pythagorean
triple family parametrization (PPTFP) P (∗,m, n|t) is the set of pairs (u, v) such that a, b,
and c satisfy equations (1.2) for every PPT (a, b, c) in P (∗,m, n|t). Category-1 type-1b and
type-2 PPTFP’s are defined similarly in terms of type-1b and type-2 PPTF’s, respectively.

Definition 2.5. Let m, n, and t be as before. The category-2 type-1a primitive Pythagorean
triple family parametrization (PPTFP) P ′(∗,m, n|t) is the set of pairs (u′, v′) such that a, b,
and c satisfy equations (1.3) for every PPT (a, b, c) in P (∗,m, n|t). Category-2 type-1b and
type-2 PPTFP’s are defined similarly in terms of type-1b and type-2 PPTF’s, respectively.

We will now look at some special cases of PPTF’s of each type.

2.1. Type-1a; m = n = 1. Here we investigate PPTF’s of the form Π(∗, 1, 1|t). The
following theorem classifies them all.

Theorem 2.6. The PPTF Π(∗, 1, 1|t) is empty unless t is an odd square (t = (2l + 1)2 for
some nonnegative integer l), in which case we have

Π(∗, 1, 1|(2l + 1)2) = {(2k(2l + 1) + (2l + 1)2, 2k2 + 2k(2l + 1),

2k2 + 2k(2l + 1) + (2l + 1)2) : k ∈ Z+, gcd(k, 2l + 1) = 1}.
(2.4)

Proof. First we show that Π(∗, 1, 1|t) is empty unless t is an odd square. We know that (a, b, c)
belongs to Π(∗, 1, 1|t) if and only if c− b = t. From Euclid’s parametrization (1.2), this is true
if and only if u2 + v2 − 2uv = (u − v)2 = t. But since u and v have opposite parity, this is
equivalent to t being an odd square.

Next we must verify equation (2.4). It is straightforward to show that every triple (a, b, c)
of the form given by (2.4) satisfies a2+ b2 = c2. It is also straightforward to show that (a, b, c)
is primitive if and only if gcd(k, 2l+1) = 1. Thus we see that every element of the set T on the
right side of (2.4) must belong to S = Π(∗, 1, 1|(2l+1)2), so T ⊂ S. Now consider an arbitrary
element (a, b, c) of S. We know that c− b = (u − v)2 = (2l + 1)2, hence, u− v = 2l + 1 since
u > v. Thus, without loss of generality we let v = k and u = k + 2l + 1, where k is a positive
integer. From (1.2), we see that a = u2−v2 = 2k(2l+1)+(2l+1)2, b = 2uv = 2k2+2k(2l+1),
and c = 2k2 + 2k(2l + 1) + (2l + 1)2. Thus we have S ⊂ T , hence, S = T , verifying (2.4). �

The first few examples of Π(∗, 1, 1|t) are as follows:

Π(∗, 1, 1|1) = {(2k + 1, 2k2 + 2k, 2k2 + 2k + 1) : k ∈ Z+} (2.5)

= {(3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41), . . .};

Π(∗, 1, 1|9) = {(6k + 9, 2k2 + 6k, 2k2 + 6k + 9) : k ∈ Z+, 36 |k} (2.6)

= {(15, 8, 17), (21, 20, 29), (33, 56, 65), (39, 80, 89), . . .};

Π(∗, 1, 1|25) = {(10k + 25, 2k2 + 10k, 2k2 + 10k + 25) : k ∈ Z+, 56 |k} (2.7)

= {(35, 12, 37), (45, 28, 53), (55, 48, 73), (65, 72, 97), . . .};
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2.2. Type-1b; m = n = 1. Here we investigate PPTF’s of the form Π(1, ∗, 1|t). The
following theorem classifies them all.

Theorem 2.7. The PPTF Π(1, ∗, 1|t) is empty unless t is twice a square, in which case we
have

Π(1, ∗, 1|2(2l)2) = {((2k + 1)2 − (2l)2, 2(2k + 1)(2l), (2k + 1)2 + (2l)2) :

k ∈ Z, k ≥ l, gcd(2k + 1, l) = 1};
(2.8)

Π(1, ∗, 1|2(2l + 1)2) = {(2k)2 − (2l + 1)2, 2(2k)(2l + 1), (2k)2 + (2l + 1)2) :

k ∈ Z, k > l, gcd(k, 2l + 1) = 1}. (2.9)

Proof. First consider S = Π(1, ∗, 1|2(2l)2). We have (a, b, c) ∈ S if and only if c− a = 2(2l)2.
Using the parametrization in (1.2) and simplifying, we find v = 2l. Since v is even, u must
be odd, so we may write u = 2k + 1 for k ≥ l. Equation (2.8) now follows easily from the
formulas in (1.2) for a, b, and c. As before, the gcd condition arises from the requirement of
primitivity. The derivation of (2.9) is similar. �

The first few examples of Π(1, ∗, 1|t) are as follows.

Π(1, ∗, 1|2) = {(4k2 − 1, 4k, 4k2 + 1) : k ∈ Z+} (2.10)

= {(3, 4, 5), (15, 8, 17), (35, 12, 37), (63, 16, 65), . . .};

Π(1, ∗, 1|8) = {(4k2 + 4k − 3, 8k + 4, 4k2 + 4k + 5) : k ∈ Z+} (2.11)

= {(5, 12, 13), (21, 20, 29), (45, 28, 53), (77, 36, 85), . . .};

Π(1, ∗, 1|18) = {(4k2 − 9, 12k, 4k2 + 9) : k ∈ Z, k ≥ 2, 36 |k} (2.12)

= {(7, 24, 25), (55, 48, 73), (91, 60, 109), (187, 84, 205), . . .};

Π(1, ∗, 1|32) = {(4k2 + 4k − 15, 16k + 8, 4k2 + 4k + 17) : k ∈ Z, k ≥ 2} (2.13)

= {(9, 40, 41), (33, 56, 65), (65, 72, 97), (105, 88, 137), . . .};

2.3. Type-2; m = n = 1, t = ±1. Here we investigate the PPTF’s Π(1, 1, ∗|1) and
Π(1, 1, ∗|−1). Unlike in the previous two cases (which are special), each of these PPTF’s
corresponds to an infinite family of right triangles which are asymptotically similar to a par-
ticular one, in this case an isosceles right triangle. The following theorem classifies each of
these PPTF’s.

Theorem 2.8. The PPTF’s Π(1, 1, ∗|1) and Π(1, 1, ∗|−1) are given by the following formulas:

Π(1, 1, ∗|1) = {(1
2
(H4k−1 − 1), 1

2
(H4k−1 + 1), P4k−1), k ∈ Z+}; (2.14)

Π(1, 1, ∗|−1) = {(1
2
(H4k+1 + 1), 1

2
(H4k+1 − 1), P4k+1), k ∈ Z+}, (2.15)

where Pk and Hk are the kth Pell numbers and half companion Pell numbers, respectively, [8].

Proof. First we note that the triple (a, b, c) belongs to Π(1, 1, ∗| ± 1) if and only if a− b = ±1.
From the parametrization in (1.2), this is equivalent to

u2 − 2uv − v2 = ±1. (2.16)

Letting w = u− v, this becomes

w2 − 2v2 = ±1. (2.17)
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This is the well-known Pell equation and negated Pell equation for n = 2, [7]. Its positive
solutions are v = Pk and w = Hk, the right side being (−1)k. The numbers Pk are known as
Pell numbers and the numbers Hk are called half companion Pell numbers. They satisfy the
recurrences Pk+1 = 2Pk + Pk−1 and Hk+1 = 2Hk + Hk−1 and the initial conditions P0 = 0,
P1 = 1 and H0 = H1 = 1. Alternatively, these numbers may be defined (analogously to the
Binet formulas for Fk and Lk) in terms of γ = 1 +

√
2 and δ = 1−

√
2 as follows:

Pk =
γk − δk√

8
; (2.18)

Hk =
γk + δk

2
. (2.19)

k Pk Hk

0 0 1
1 1 1
2 2 3
3 5 7
4 12 17
5 29 41
6 70 99
7 169 239
8 408 577

Table 2. The first few Pell numbers and half companion Pell numbers.

Below we list some useful identities involving Pell numbers and half companion Pell numbers.
These may all be easily proven by use of equations (2.18) and (2.19), noting that γδ = −1.

Pk +Hk = Pk+1; (2.20)

P 2
k+1 − P 2

k = 1

2
[H2k+1 + (−1)k]; (2.21)

2PkPk+1 =
1

2
[H2k+1 + (−1)k+1]; (2.22)

P 2
k+1 + P 2

k = P2k+1. (2.23)

Note that uk = vk + wk = Pk +Hk = Pk+1, vk = Pk, and tk = (−1)k, hence

P (1, 1, ∗|1) = {(P2k, P2k−1) : k ∈ Z+} (2.24)

and

P (1, 1, ∗|−1) = {(P2k+1, P2k) : k ∈ Z+}. (2.25)

Now consider the kth element (ak, bk, ck) of Π(1, 1, ∗|1). We have ak = u2k − v2k = P 2
2k −

P 2
2k−1

= 1

2
(H4k−1 − 1) by (2.21). Similarly we have bk = 2ukvk = 2P2kP2k−1 = 1

2
(H4k−1 + 1)

by (2.22). Finally we have ck = u2k + v2k = P 2
2k + P 2

2k−1
= P4k−1 by (2.23). Thus we have

verified (2.14). The derivation of (2.15) is similar. (For a similar derivation of this theorem,
see [1].) �
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Below we explicitly list the first few elements of Π(1, 1, ∗|1) and Π(1, 1, ∗|−1). Note that
the coefficients grow exponentially, unlike those of the previous special examples, which grow
quadratically and linearly. Exponential growth is typical for PPTF’s.

Π(1, 1, ∗|1) = {(3, 4, 5), (119, 120, 169), (4059, 4060, 5741), . . .}; (2.26)

Π(1, 1, ∗|−1) = {(21, 20, 29), (697, 696, 985), (23661, 23660, 33461), . . .}.

3. Connection with Fibonacci and Lucas Numbers

We have found a fascinating connection of certain PPTF’s with Fibonacci and Lucas num-
bers. In this section we present eight PPTF’s whose coefficients may all be simply expressed
in terms of Fibonacci or Lucas numbers.

Before we continue, we will find the following two theorems useful. As always, we use α to
represent the golden mean, i.e. α = 1

2
(1 +

√
5).

Theorem 3.1. Let u and v be nonnegative integers. Then u and v satisfy the equation

u2 − 5v2 = ±4

if and only if there exists a nonnegative integer j such that u = Lj and v = Fj , in which case
we have

u2 − 5v2 = 4(−1)j . (3.1)

Proof. We first note that

u2 − 5v2 = (u+ v
√
5)(u− v

√
5) = N(u+ v

√
5), (3.2)

where N(γ) is the norm of an element γ of the number field K = Q(
√
5). Now since the ring

of integers R = OK = Z[α] is a UFD [5], we have

N(γ) = ±4

if and only if γ is an associate of 2, i.e if and only if γ = ±2αj for some integer j, since α is
the fundamental unit of K, [6]. Thus we see that u2−5v2 = ±4 if and only if u+v

√
5 = ±2αj

for some integer j. Now from the Binet formulas, it is trivial to show that

αj = Lj + Fj

√
5. (3.3)

Thus we have

u2 − 5v2 = ±4 ⇔ u+ v
√
5 = ±2αj = ±(Lj + Fj

√
5) (3.4)

⇔ u = ±Lj, v = ±Fj

where the signs of uj and vj are the same.
Note that in order for u and v to both be nonnegative, we must have uv = FjLj = F2j ≥ 0,

which is true if and only if j is nonnegative, in which case both Fj and Lj are nonnegative,
hence the ± signs on the right side of (3.4) become plus signs.

To complete the proof, we must verify the sign in equation (3.1). This follows from the fact
that N(α) = −1. �

We also have the following closely-related theorem.
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Theorem 3.2. Let u and v be nonnegative integers. Then u and v satisfy the equation

u2 − 5v2 = ±1

if and only if there exists a nonnegative integer j such that u = 1

2
L3j and v = 1

2
F3j , in which

case we have

u2 − 5v2 = (−1)j . (3.5)

Proof. Let U = 2u and V = 2v. Then U and V satisfy the equation

U2 − 5V 2 = 4(−1)j

if and only if u and v satisfy equation (3.5). If and only if this is the case, by Theorem 3.1, we
have U = Li and V = Fi for some nonnegative integer i. Now U and V are both even precisely
when i is a multiple of 3, i.e. i = 3j for some nonnegative integer j. The result follows. �

We now look at various types of PPTF’s whose coefficients involve Fibonacci and Lucas
numbers.

3.1. Type-1a; m = 2, n = 3. Here we investigate PPTF’s of the form Π(∗, 2, 3|t) for some
small integer t. These PPTF’s correspond to families of right triangles asymptotically similar
to one with legs of length

√
5 and 2 and hypotenuse of length 3. The reason we might expect

a connection with Fibonacci and/or Lucas numbers is that these numbers are intimately

connected with the golden mean α, which lies in the number field Q(
√
5).

By definition, a PPT (a, b, c) belongs to Π(∗, 2, 3|t) if and only if 2c − 3b = t, which holds
if and only if

2(u′2 + v′2)− 3(u′2 − v′2) = 2t,

where u′ and v′ are the parameters in Theorem 1.5. Thus we have

u′2 − 5v′2 = −2t.

The simplest nontrivial case to consider is t = ±2, in which case we have

u′2 − 5v′2 = ∓4.

The following theorem classifies all PPTF’s of the form Π(∗, 2, 3|±2).

Theorem 3.3. The PPTF’s Π(∗, 2, 3|2) and Π(2, 3, ∗|−2) are given by the following formulas:

Π(∗, 2, 3|2) = {(F12k−2,
2

5
(L12k−2 − 3), 1

5
(3L12k−2 − 4)), k ∈ Z+}

∪ {(F12k+2,
2

5
(L12k+2 − 3), 1

5
(3L12k+2 − 4)), k ∈ Z+}; (3.6)

Π(∗, 2, 3|−2) = {(F12k+4,
2

5
(L12k+4 + 3), 1

5
(3L12k+4 + 4)), k ∈ N}

∪ {(F12k+8,
2

5
(L12k+8 + 3), 1

5
(3L12k+8 + 4)), k ∈ N}. (3.7)

Proof. We start by proving the following lemma, from which Theorem 3.3 will easily follow.

Lemma 3.4. We have

P ′(∗, 2, 3|2) = {(L6k−1, F6k−1) : k ∈ Z+} ∪ {(L6k+1, F6k+1) : k ∈ Z+} (3.8)

and

P ′(∗, 2, 3|−2) = {(L6k+2, F6k+2) : k ∈ N} ∪ {(L6k+4, F6k+4) : k ∈ N}. (3.9)
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Proof. From Definition 2.5 and parametrization (1.3), we have

(u′, v′) ∈ P ′(∗, 2, 3|±2) ⇔ u′2 + v′2 − 3

2
(u′2 − v′2) = ±2 (3.10)

⇔ u′2 − 5v′2 = ∓4

⇔ u′ = Lj , v′ = Fj

where the last line follows from Theorem 3.1. We should also note that j is even if and only
if t is negative. We must be careful however in choosing j. In order for the parametrization
(1.3) to be valid, u′j = Lj and v′j = Fj must both be odd, which is true if and only if j is
not divisible by 3. We also note that j = 1 does not lead to a valid parametrization since
u′1 = L1 = 1 and v′1 = F1 = 1 are equal and we require that u′j > v′j . Nevertheless, every

other choice of positive integer j is valid, and it is easy to see that odd j (j = 6k± 1 for some
positive integer k) correspond to elements (u′j , v

′

j) of P ′(∗, 2, 3|2) and even j (j = 6k + 2 or

6k + 4 for some nonnegative integer k) correspond to elements of P ′(∗, 2, 3|−2). The result
follows. �

It is instructive to look at a table of u′j = Lj, v
′

j = Fj , tj = 1

2
(u′2j − 5v′2j ) = 2cj − 3bj =

2(−1)j+1 as well as aj , bj, and cj for some small values of j.

j u′j v′j aj bj cj tj
0 2 0 − − − −
1 1 1 − − − −
2 3 1 3 4 5 −2
3 4 2 − − − −
4 7 3 21 20 29 −2
5 11 5 55 48 73 2
6 18 8 − − − −
7 29 13 377 336 505 2
8 47 21 987 884 1325 −2
9 76 34 − − − −

Table 2. The first few elements of the PPTF’s Π(∗, 2, 3|±2) and their parametrizations.

Now to complete the proof of the theorem, we merely note the following easily-derived
identities:

aj = u′jv
′

j = LjFj = F2j ; (3.11)

bj =
1

2
(u′2j − v′2j ) =

1

2
(L2

j − F 2
j ) =

2

5
[L2j + 3(−1)j ]; (3.12)

cj =
1

2
(u′2j + v′2j ) =

1

2
(L2

j + F 2
j ) =

1

5
[3L2j + 4(−1)j ]. (3.13)

Equations (3.6) and (3.7) now follow easily from equations (3.8) and (3.9), respectively as well
as equations (3.11) - (3.13). �

For completeness, we write down the first few solutions to Π(∗, 2, 3|±2).

Π(∗, 2, 3|−2) = {(3, 4, 5), (21, 20, 29), (987, 884, 1325), (6765, 6052, 9077), . . .}; (3.14)

Π(∗, 2, 3|2) = {(55, 48, 73), (377, 336, 505), (17711, 15840, 23761), (121393, 108576, 162865) . . .}.
(3.15)
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3.2. Type-1b; m = 2, n = 3. Here we investigate PPTF’s of the form Π(2, ∗, 3|t) for
some small t. Like the previous case, these PPTF’s correspond to right triangles which are
asymptotically similar to one with legs of length 2 and

√
5 and hypotenuse of length 3, so we

expect the same type of connection with Fibonacci and Lucas numbers. For these PPTF’s we
have 2c− 3a = t, hence,

2(u2 + v2)− 3(u2 − v2) = t,

or

u2 − 5v2 = −t.

Here the simplest nontrivial case to consider is t = ±1. The following theorem classifies all
PPTF’s of the form Π(2, ∗, 3|±1).

Theorem 3.5. The PPTF’s Π(2, ∗, 3|1) and Π(2, ∗, 3|−1) are given by the following formulas:

Π(2, ∗, 3|1) = {(1
5
(L12k+6 − 3), 1

2
F12k+6,

1

10
(3L12k+6 − 4)), k ∈ N}; (3.16)

Π(2, ∗, 3|−1) = {(1
5
(L12k + 3), 1

2
F12k,

1

10
(3L12k + 4)), k ∈ Z+}. (3.17)

Proof. We start by proving the following lemma, from which Theorem 3.5 will easily follow.

Lemma 3.6. We have

P (2, ∗, 3|1) = {(L6k+3, F6k+3) : k ∈ N} (3.18)

and

P (2, ∗, 3|−1) = {(L6k, F6k) : k ∈ Z+}. (3.19)

Proof. From Definition 2.4 and parametrization (1.2), we have

(u, v) ∈ P (2, ∗, 3|±1) ⇔ 2(u2 + v2)− 3(u2 − v2) = ±1 (3.20)

⇔ u2 − 5v2 = ∓1

⇔ u = 1

2
L3j, v = 1

2
F3j ,

where the last line follows from Theorem 3.2. We also have

t = 5v2 − u2 = (−1)j+1 (3.21)

hence (3.18) and (3.19) follow. �

Below we tabulate the first few values of uj = 1

2
L3j , vj = 1

2
F3j , aj = u2j − v2j , bj = 2ujvj,

cj = u2j + v2j , and tj = 5vj − uj = 2aj − 3cj = (−1)j+1.

j uj vj aj bj cj tj
0 1 0 − − − −
1 2 1 3 4 5 1
2 9 4 65 72 97 −1
3 38 17 1155 1292 1733 1
4 161 72 20737 23184 31105 −1

Table 3. The first few elements of the PPTF’s Π(2, ∗, 3|±1) and their parametrizations.
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Now to complete the proof of the theorem, we merely note the following identities, which
follow from equations (3.11)-(3.13):

ak = u2k − v2k = 1

4
(L2

3k − F 2
3k) =

1

5
[L6k + 3(−1)k]; (3.22)

bk = 2ukvk = 1

2
L3kF3k = 1

2
F6k; (3.23)

ck = u2k + v2k = 1

4
(L2

3k + F 2
3k) =

1

10
[3L6k + 4(−1)k]. (3.24)

�

As before, we present the first few solutions to Π(2, ∗, 3|±1).

Π(2, ∗, 3|1) = {(3, 4, 5), (1155, 1292, 1733), (372099, 416020, 558149), . . .}; (3.25)

Π(2, ∗, 3|−1) = {(65, 72, 97), (20737, 23184, 31105), (6677057, 7465176, 10015585), . . .}. (3.26)

3.3. Type-2; m = 1, n = 2. In this subsection we consider type-2 PPTF’s with m = 1 and
n = 2. Such PPTF’s are asymptotically similar to a right triangle with legs of length 1 and
2 and hypotenuse of length

√
5, hence we might expect such a connection with Fibonacci and

Lucas numbers once again.
Consider the PPTF S = Π(1, 2, ∗|t), where t is a small integer yet to be determined. Every

PPT (a, b, c) in S satisfies the equation b − 2a = t, which by virtue of (1.2) implies that the
parameters u and v satisfy the equation

2uv − 2u2 + 2v2 = t. (3.27)

Since the left side is even, the right side must also be, implying that t is even. The simplest
possibilities are t = ±2.

Theorem 3.7. We have

Π(1, 2, ∗|−2) = {(1
5
(L12k−7 + 4), 2

5
(L12k−7 − 1), F12k−7) : k ∈ Z+} (3.28)

∪ {(1
5
(L12k+1 + 4), 2

5
(L12k+1 − 1), F12k+1) : k ∈ Z+}

and

lclΠ(1, 2, ∗|2) = {(1
5
(L12k−5 − 4), 2

5
(L12k−5 + 1), F12k−5) : k ∈ Z+} (3.29)

∪ {(1
5
(L12k−1 − 4), 2

5
(L12k−1 + 1), F12k−1) : k ∈ Z+}.

Proof. We start by proving the following lemma, from which Theorem 3.7 will easily follow.

Lemma 3.8. We have

P (1, 2, ∗|−2) = {(F6k−3, F6k−4) : k ∈ Z+} ∪ {(F6k+1, F6k) : k ∈ Z+} (3.30)

and

P (1, 2, ∗|2) = {(F6k−2, F6k−3) : k ∈ Z+} ∪ {(F6k , F6k−1) : k ∈ Z+}. (3.31)

Proof. After some simplification, (3.27) becomes

w2 − 5v2 = 2t = ±4, (3.32)

where w = 2u− v. By Theorem 3.1, we have w = Lj and v = Fj for some nonnegative integer

j. Thus we have u = 1

2
(v + w) = 1

2
(Lj + Fj) = Fj+1 and v = Fj .

The following table lists the first few values of uj = Fj+1 and vj = Fj as well as aj , bj, cj ,
and tj = bj − 2aj = 2(−1)j+1 where applicable.
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j uj vj aj bj cj tj
1 1 1 − − − −
2 2 1 3 4 5 −2
3 3 2 5 12 13 2
4 5 3 − − − −
5 8 5 39 80 89 2
6 13 8 105 208 233 −2
7 21 13 − − − −

Table 3. The first few elements of the PPTF’s Π(1, 2, ∗| ± 2) and their parametrizations.

The rows in which aj , bj , cj , and tj are not listed are precisely those rows in which uj
and vj have the same parity (both odd), in which case the parametrization in (1.2) is not
applicable. It is easy to see that these rows correspond to values of j congruent to 1 modulo
3. (Alternatively, one can see this by noting that Fj is even if and only if j is divisible by 3,
so that uj = Fj+1 and vj = Fj are both odd if and only if j is congruent to 1 modulo 3.)

To complete the proof of the lemma, we note that tj = 2 if and only if j is congruent to 3
or 5 modulo 6, in which case the Fibonacci index of uj is congruent to −2 (resp. 0) modulo 6
and that of vj is congruent to −3 (resp. −1) mod 6. �

Now to complete the proof of the theorem, we need to verify that aj, bj , and cj are given by
the formulas implied by (3.28) and (3.29), as the case may be. This is equivalent to showing
the following:

F 2
6k+s − F 2

6k+s−1 =
1

5
(L12+2s−1 + 4); (3.33)

F6k+sF6k+s−1 =
1

5
(L12k+2s−1 − 1); (3.34)

F 2
6k+s + F 2

6k+s−1 = F12k+2s−1 (3.35)

for all positive integers k and for s = −3,−2, 0 and 1. Each of these equations are in fact true
for all integers s. Equation (3.34) follows from the identity

FkFk+1 =
1

5
(L2k+1 − 1), (3.36)

which is easily verifiable either by induction or by use of the Binet formulas. Similarly, equation
(3.35) follows from the well-known identity [4]

F 2
k+1 + F 2

k = F2k+1, (3.37)

while (3.33) follows from the easily verifiable identity

F 2
k+1 − F 2

k = 1

5
(L2k+1 + 4). (3.38)

�

For completeness, we write down the first few solutions to Π(1, 2, ∗| ± 2).

Π(1, 2, ∗|−2) = {(3, 4, 5), (105, 208, 233), (715, 1428, 1597), (33553, 67104, 75025), . . .}. (3.39)

Π(1, 2, ∗|2) = {(5, 12, 13), (39, 80, 89), (1869, 3740, 4181), (12815, 25632, 28657), . . .}. (3.40)
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3.4. Type-2; m = 2, n = 1. Now let us look at PPTF’s of the form Π(2, 1, ∗|t) for some
small t. As in the previous subsection, such PPTF’s are also asymptotically similar to a right
triangle with sides of length 2, 1, and

√
5, so we might expect the coefficients of the PPT’s in

such a PPTF to once again be simply expressible in terms of Fibonacci and Lucas numbers.
Each PPT in this class of PPTF’s must satisfy 2b−a = t. Using the alternate parametrization
given by (1.3), this becomes

u′
2 − v′

2 − u′v′ = t. (3.41)

Multiplying (3.41) by 4 and completing the square yields

(2u′ − v′)
2 − 5v′

2
= 4t. (3.42)

Now if we let w′ = 2u′ − v′, we obtain

w′2 − 5v′
2
= 4t. (3.43)

Note that apart from the names of the variables and the value of the right side of the equation,
(3.43) is identical to (3.32), which we know how to solve. The main and only difference here
is in the value of t, the simplest values now being t = ±1, which yields

w′2 − 5v′
2
= ±4. (3.44)

Now this is identical to (3.32), which we solved in the previous subsection. Also analogously
to the previous case, we have u′ = 1

2
(v′ +w′). Thus we have the same solutions for u′, v′ and

w′ as we had for u, v, and w, respectively in the previous subsection. Note however that this
time, since we are using the alternate parametrization (1.3), u′ and v′ must both be odd in
order to yield a solution. Without much extra work, we can now prove the following theorem.

Theorem 3.9. We have

Π(2, 1, ∗|1) = {(1
5
(L12k−3 − 1), 1

10
(L12k−3 + 4), 1

2
F12k−3) : k ∈ Z+} (3.45)

and
Π(2, 1, ∗|−1) = {(1

5
(L12k+3 + 1), 1

10
(L12k+3 − 4), 1

2
F12k+3) : k ∈ Z+}. (3.46)

Proof. Once again we begin by first proving a lemma regarding related PPTFP’s.

Lemma 3.10. We have

P ′(2, 1, ∗|1) = {(F6k−1, F6k−2) : k ∈ Z+} (3.47)

and
P ′(2, 1, ∗|−1) = {(F6k+2, F6k+1) : k ∈ Z+}. (3.48)

Proof. As noted above, since u′ and v′ satisfy the same equations as u and v in the previous
subsection, they yield the same solutions. However, this time we only obtain PPTF’s if u′ and
v′ are both odd. The following table illustrates this:

FEBRUARY 2012 79



THE FIBONACCI QUARTERLY

j u′j v′j aj bj cj tj
1 1 1 − − − −
2 2 1 − − − −
3 3 2 − − − −
4 5 3 15 8 17 1
5 8 5 − − − −
6 13 8 − − − −
7 21 13 273 136 305 −1

Table 4. The first few elements of the PPTF’s Π′(2, 1, ∗| ± 1) and their parametrizations.

Note that u′j = Fj+1 and v′j = Fj are both odd if and only if j is congruent to 1 modulo 3.

We also note that tj = (−1)j , which is easy to see by checking the base case and noting that
tj alternates sign as j increases by 3. Thus we see that P ′(2, 1, ∗|1) corresponds to the rows
of the above table with j congruent to 4 modulo 6, while P ′(2, 1, ∗|1) corresponds to the rows
with j congruent to 1 modulo 6. The result follows. �

Now to complete the proof of the theorem, we merely apply equations (3.33)-(3.35) again
to the equations for a, b, and c, which we obtain by applying equations (1.3). Specifically, for
s = 0 or 1 we have

a = u′
6k−3sv

′

6k−3s = F6k−3s+2F6k−3s+1 = 1

5
(L12k−6s+3 + (−1)s);

b = 1

2
(u′

6k−3s
2 − v′

6k−3s
2) = 1

2
(F 2

6k−3s+2
− F 2

6k−3s+1
) = 1

10
(L12k−6s+3 + 4(−1)s+1);

c = 1

2
(u′

6k−3s
2 + v′

6k−3s
2) = 1

2
(F 2

6k−3s+2
+ F 2

6k−3s+1
) = 1

2
F12k−6s+3.

(3.49)
Clearly the case s = 0 corresponds to t = −1 and s = 1 corresponds to t = 1. Equations
(3.45) and (3.46) thus follow from the above equations. �

Here we list the first few solutions to Π(2, 1, ∗| ± 1).

Π(2, 1, ∗|1) = {(15, 8, 17), (4895, 2448, 5473), (1576239, 788120, 1762289), . . .}. (3.50)

Π(2, 1, ∗|−1) = {(273, 136, 305), (87841, 43920, 98209), (28284465, 14142232, 31622993), . . .}.
(3.51)

4. Further Work

We seem to be touching on an exciting topic, which clearly can be expanded. For instance,
it would be useful to know if we can write down solutions to all PPTF’s, or at least to those
with small values of t. The connection with Fibonacci and Lucas numbers is quite intriguing.
Perhaps there are such connections as well for other values of m and n and/or for other types.
Similarly, the connection with Pell numbers and companion Pell numbers for type-2 PPTF’s
with m = n = 1 suggests that there may be similar connections for other values of m and
n and/or for other types. In fact, we may be able to generalize to sequences such as these
for arbitrary PPTF types and arbitrary m and n. We may even be able to go further. Why
restrict ourselves to right triangles? It may be worthwhile to investigate arbitrary triangles in
which one of the angles is some fixed value with a rational cosine.
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