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ABSTRACT. The Fibonacci—like 4 x 4 magic square of Herta Freitag is analyzed from the
standpoint of orthogonal diagonal latin squares and generalized to similar squares of higher
dimension. Construction of such arrays are investigated and several examples are presented.
The special case of 3 x 3 is constructed by other means leaving as the only unknown construc-
tions of Fibonacci-like magic squares the 6 x 6 case.

1. INTRODUCTION

In [5], Brown showed that for n > 2 there do not exist any n x n magic squares with distinct
entries chosen from a set of Fibonacci numbers. In [12, Array 5], Freitag discovered a 4 x 4
magic square and an algorithm for constructing an infinite family of such magic squares, [Fg],,
having magic constant Fj g,

Fa+2 Fa+6 Fa+1 + Fa+6 Fa+4
F,), = Foys+ Fugs Foys For1+ Fors Fo+ Fata (1.1)
a4 Fa+2+Fa+5 Fa+Fa+6 Fa+5 2F’a—l—l ’ ’

Fa+1+Fa+4 Fa+1+Fa+3 Fa+Fa+2 Fa+7
and provided the example
13 89 97 34
110 21 63 39
Fla=1 63 94 55 16
42 29 18 144

We note that the entry 2F, 11 = F,_1 + Fy19 so if a > 2 Zeckendorf’s Theorem guarantees
that the entries in (1.1) are unique. The entries in (1.1) are the sum of at most two Fibonacci
numbers. Such squares will be referred to as Fibonacci-like magic squares.

Except for the case of n = 3, our construction of Fibonacci-like magic squares uses matrices
known as orthogonal or graeco—latin squares. Using latin squares to construct magic squares
is not original with this paper. Indeed, the first reference using this technique was presented
by Euler [10] to the St. Petersburg Academy in 1776. However, whereas magic squares
are categorized as recreational mathematics, latin squares have significant applications. For
example, they are used in coding theory, statistical design, combinatorial group theory, biology,
marketing, etc., and so, in general, material on latin squares can be obtained from a variety of
sources. See, for example [8, 16, 24] and the extensive bibliography in [8]. It will be informative
if we present various definitions and properties of latin squares, most of which are found in
8, 9].
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Definition 1.1. A latin square, L = [a;;] of order or dimension n is an n x n matrix with
entries from a set S of n elements, where none of the entries occur more than once in the same
row or column.

Definition 1.2. A latin square L is diagonal if the entries on the main diagonal are distinct
and the entries on the counter diagonal are distinct. L is called pandiagonal if L is diagonal
and the entries on each of the broken diagonals are distinct.

Definition 1.3. Two order-n latin squares, L1 = [a;;] with entries from a set S and Lo = [b;;]
with entries from a set T, are orthogonal, if the set of ordered pairs {(a;;,b;;)} = S x T, are
distinct.

Definition 1.4. A latin square that is orthogonal to its transpose is called self-orthogonal.

Definition 1.5. A magic square is an n X n array with distinct whole number entries whose
sum, in any row, column, main diagonal, and counter diagonal is a constant. The constant
is called the magic number or the magic constant. If the n? entries are 1,...,n? (or
0,...,n% — 1) then the magic square is called an ordinary magic square.

Definition 1.6. A magic square is called Fibonacci—like if each entry is at most the sum of
two Fibonacci numbers.

On a historical note, Euler [11] used the first n Latin letters and the first n Graeco-Roman
letters for .S and T" and hence the names latin and graeco—latin squares. As an aside we invite
the reader to visit The Euler Archive, an e-library, at www.math.dartmouth.edu/~euler to
peruse the complete works (866 articles!) that are available.

In Section 3, we generalize (1.1). To facilitate understanding, we point out the following
easily proven properties of latin squares. Assume L,L; and Lo are latin squares of order
n on {0,...,n —1}. If L = [a;;] and ¢ € S,, the permutation group on n letters, then
o(L) = [o(ai;)] is alatin square. If Ly, Ly are orthogonal (diagonal) latin squares and o,y € Sy,
then o(L1),v(L2) are orthogonal (diagonal) latin squares. Given a diagonal latin square
L = [ai;], let o(a;;) = 9. Then o(L) has the additional property that 0,1,2...,n — 1 are
sequential on the main diagonal.

We will show that given two orthogonal diagonal latin squares it will always be possible
to construct a Fibonacci-like magic square. However, for what values of n is it possible to
construct two diagonal orthogonal latin squares? In the case of n odd not divisible by 3 it is
easy to construct self-orthogonal diagonal latin squares by the following theorem.

Theorem 1.7. [8, p 109] If n is odd not divisible by 3 then the n x n matriz L = [a;;] where
0<i,j<n-—1and

a;j =2i+j (mod n)
is a self-orthogonal, pan-diagonal, latin square.

For n = 1, obviously the array [0] is a self-orthogonal diagonal latin square. No magic
square of order 2 exists and the two latin squares of order 2 are not orthogonal. None of the
twelve latin squares for n = 3 are diagonal [24] and no orthogonal latin squares exist for n = 6
[19]. For a historical account of orthogonal latin squares of order 4n + 2 see [2, 3, 11, 18, 19].
For all other values of n, orthogonal diagonal latin squares exist and the solutions/techniques
used can be found in [1, 8, 9, 14, 20, 21, 22, 23]. We summarize these results in the following
theorem.
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Theorem 1.8. Ifn ¢ {2,3,6} then self-orthogonal pairs of diagonal latin squares of order n
exist. If n € {2,3,6} then orthogonal pairs of diagonal latin squares do not exist.

Our extension of Frietag’s Fibonacci-like magic squares to higher dimensions is a specific
application of the basic method by which one constructs a general magic square by means of
orthogonal latin squares. See, for example [8, 10] or less formally [16].

Construction 1.9. Let L1 = [b;j], Lo = [c;;] be orthogonal diagonal latin squares of order n
on{0,...,n—1}. Let S = {s;li =0,...,n—1} and T = {t;/i = 0,...,n — 1} be sets each
containing n distinct values. If {s +t|s € S,t € T} contains n? distinct values then

[sbij] + [tcij]

s a magic square with magic constant MN = Z?:_Ol(si +ti).

The proof of this follows directly from Definitions 1.1, 1.2, 1.3 and the hypothesis that
{s+t|s € S,t € T} contains n? distinct values.

By this method, an ordinary n x n magic square [O], with entries 0,...,n? — 1 can be
constructed using orthogonal diagonal latin squares [b;;], [c;;] of order n where

For example,

0 3 1 2 0 2 31 0 11 13 6
2130 44 3102 |14 5 3 8
3 0 21 1 3 20 7T 12 10 1
1 2 0 3 2 01 3 9 2 4 15

is an ordinary magic square of order 4, with magic number M N = 30.

2. FREITAG’S FIBONACCI MAGIC SQUARE REVISITED

Freitag’s procedure involved constructing three magic squares. This first array [12, Array
3]

Fao+Fa4 Fa3+Fa6 Fa1+Fa7 Fa2+Fa5
Fa2+Fa7 Fa1+Fa5 Fa3+Fa4 FaO+Fa6

, 2.1
Foy+ Fay Foo+ Far Fay+ Fay Fy + Fo, @1)
Fal +Fa6 Fag +Fa4 Fao +Fa5 Fa3 +Fa7
where F,,, ..., F,, are arbitrary Fibonacci numbers, generates an infinite family of Fibonacci-
like magic squares. If F,,..., Fy, are distinct and F,,, ..., Fy, are distinct then this magic

square can be written as
Fao Fag Fa1 Fag a4 Fag Fa7 Fa5
Fo, F, Foy Fy, + F,, F. Fa Fo (2.2)
Fo, Fo Fo, Fo F,. F., Fu Fu, '
F,, F,, Fo Fu, F.. F., Fa, Fo,

which by Definitions 1.2 and 1.3 is the sum of two orthogonal diagonal latin squares. How-
ever, ZZ:O F,, is not in general a Fibonacci number. By using a variation on the identity
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St Faiiq = Fy, [17, Theorem 5.2, p.71] and imposing restrictions on the Fy,, her second
array [12, Array 4], which can be written as

F, Fu5 Fyp1 Fuys Forr Farin Fay1z3 Fago
Fors Fay1 Fays  Fa n For13 Far9  Fayr Fupnn (2.3)
Fa+5 Fa Fa+3 Fa—l—l Fa+9 Fa+13 Fa+11 Fa+7 ’ '
Fop1 Fopz F,  Fuys For11 Fayr Fayg Fagas

corrects this so that the magic number MN = F, 44— = Fay14. By imposing different

restrictions on the Fy,, her last array (1.1) has magic number M N = F,4g and displays the
main diagonal as single Fibonacci numbers.

Using the observations above, in the following section, we extend (1.1), (2.1), and (2.3) to
higher dimensional magic squares for sequences arising from second order recurrence relations.

3. HIGHER DIMENSIONAL FREITAG-TYPE MAGIC SQUARES

In this section, we extend the results of Freitag to higher dimensions. Since the extensions
are by Construction 1.9, Theorem 1.8 applies and so excludes the dimensions 2,3,6 for these
constructions. We will need the following two technical results.

Proposition 3.1. Let S and T be two sets of Fibonacci numbers with |S| = m,|T| = n and
SNT ={}. Then the set {s+t|s € S,t € T} contains mn distinct sums.

Proof. Suppose s, s’ € S, t, t' € T, and s+t = s’ +t'. First note that since SNT = { }, then
{s,t} = {s,t'} implies s = ¢’ and t = /. Suppose both s+t and s’ 4+ t' are the Zeckendorf
representation [4, 13] of the sum of two nonconsecutive Fibonacci numbers. Then by the
Zeckendorf Theorem it follows {s,t} = {s’,#'} and so s = ¢’ and t = ¢. Now suppose at least
one of s+t or s’ +t' is not a Zeckendorf representation of the sum of two nonconsecutive
Fibonacci numbers. Without loss of generality, we can assume s+ ¢ is not written as the sum
of two nonconsecutive Fibonacci numbers. Then by the Zeckendorf Theorem it follows that
either s = ¢ or s,t are consecutive Fibonacci numbers. Since SNT = { } s # ¢, and so s,t
are consecutive Fibonacci numbers. It follows that s’, ¢ are the same consecutive Fibonacci
numbers and thus {s,t} = {s',¢'} and so s = ¢',t = /. Hence, {s+t|s € S,t € T'} contains
mn distinct sums. ([

Proposition 3.2. Let a > 2, S = {F,} U{Fu4oi1li = 1,....n — 1} and T = {Fp11} U
{Fyi2ili=1,...,n —1}. Then the set {s +t|s € S,t € T} contains n? distinct sums.

Proof. Since a > 2, F,_1, F,, and F,,; are distinct Fibonacci numbers. Let S" =S — {F,11}.
Then by Proposition 3.1 the set {s'+t|s € S’,t € T'} contains n? —n distinct sums. The sums
s’ 4+t written with the minimal number of summands of Fibonacci numbers are given by (3.1)
and (3.2). We have the 2n — 3 sums of consecutive Fibonacci numbers

Fo+ Fop1 = Foyo
Foyoi-1 + Foyoi = Fapoip1,0=2,...,n—1 (3.1)
Fopoiiv—1 + Fayoi = Fagoit2,0=1,...,n— 2,
and the n? — 3n 4+ 3 minimal sums of two non-consecutive Fibonacci numbers
Fo4+ Faroi,i=1,...,n—1
Fopoii+Fu,1=2,...,n—1 (3.2)
Foyoj1+Fap0i,7=2,....,.n—1i=1,....n—1i#ji#j—1
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The remaining sums of {s +t|s € S,t € T'} are the sums {F,41 + t|t € T'} and are

Fa+1+Fa+l :Fa—1+Fa+2
Fa+1 +Fa+2 = Fa+3 . (33)
Foy1+ Fogoii=2,...,n—1

Since a > 2, none of the sums of (3.3) are listed in (3.1) or (3.2) and so {s +t|s € S,t € T'}
has n? distinct sums. 0

The higher dimensional extension of (2.2) is now a direct consequence of Proposition 3.1
and Construction 1.9. Let n be given with the restrictions of Theorem 1.8 and Fy,, ..., Fg, ,,
F.,, ..., Fa,, , be a sequence of 2n distinct Fibonacci numbers. Let S = {s;|s; = Fy,,i =
0,....,n—1}, T = {t|t; = Fy,.,,i = 0,...,mn — 1} and Ly = [b;;], L2 = [c5] be orthogonal
diagonal latin squares of order n on the set {0,...,n — 1}. Let [F,], be the matrix from
Construction 1.9, i.e.,

[Faln = [Fabij] + [Fan+cij:|' (3.4)

Then by Proposition 3.1 the sums {s + t|s € S,t € T'} are distinct and so [F,], is a magic
square with magic constant M N = 22225 ! F,, and with entries that are the sum of at most
two Fibonacci numbers.

Similar to Frietag’s construction, for each n, (3.4) is a prescription for generating an infinite
family of Fibonacci—like magic squares.

Example 3.3. For n = 5, use Theorem 1.7 to generate the pandiagonal orthogonal latin
squares

012 3 4 0 2 4 1 3

2 3 401 1 3 0 2 4
L=|40123|,LT=]2 4130

1 2 3 40 302 41

3401 2 4 1 3 0 2

The matrixz [Fyls in this case is
Fao Fa1 a2 Fa3 Fa4 Fas Fa7 Fag FaG Fas
Fa2 Fag Fa4 Fao Fa1 Fa6 Fas Fas Fa? Fag
(Fols = | Fay Foo Far Fay Foy | + | Foy Fag Foy Foy Fuy |, (3.5)

Fa1 Fa2 Fag Fa4 Fao Fas Fas Fa7 Fag F‘IG
Fag Fa4 Fao Fa1 Faz Fag Fa6 FaS Fas Fa?

and is a panmagic square with magic constant M N = Z?:o Iy,
Example 3.4. If we let F,;, = Fiyo fori=0,...,9 in the preceding example then

14 36 92 26 63
24 60 21 35 91

[F.s=| 42 90 23 58 18 |,
57 16 39 97 22
94 29 56 15 37

is panmagic with magic constant 231, which is not a Fibonacci number.
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We now place restrictions on the Fibonacci numbers Fy,, ..., F,, |, F,,,...,Fa,, , to gen-
eralize (2.3) and (1.1). We use the extension of [17, Theorem 5.2, p.71]:

k
Fo+ ) Fuysic1 = Fopor, (3.6)
=1

which is easily proven by induction.

First, we extend (2.3) so that the entries of [Fy],, are at most the sum of two Fibonacci
numbers and the magic number is a prescribed Fibonacci number.

Let a > 1, Fy, = Fy, and F,, = Fyi0i-1,1 = 1...,2n — 1. Since a > 1, the set F' =
{Fo} U{F,42i—1li = 1,...,2n — 1} has 2n distinct Fibonacci numbers. Let [Fy],, be the magic
square of (3.4). Then the magic constant of [Fy], is now

2n—1 2n—1
MN = Z Fo, = Fo + Z Foroi1 = Fayon-1) = Fatan—2.
i=0 i=1

Example 3.5. In (3.5), let F,, = Fy and F,, = Foi9;—1 fori=1,...n—1. Then

Fo  Fat1 Foys Foys Fayr Foro Fot1s Favir Far1n Fatis
Fovs Fars Forr Fo  Fata Foy11 Fat1s Faro  Fayis Farir
[Fols = | Fayrr  Fa  Fay1 Fays Fays | + | Far1z Farir Fornn Fayis Fayo |
For1 Fars Fays Fapr  Fu Fot15 Fatr9 Far1s Fap17 Forn
Foys Fopr Fy,  Fypr Fugs Foy17 Far1n Fay1s Faro  Fayis

18 a panmagic square with magic constant Fora)—2 = Fatis.

Example 3.6. If a = 2 in the previous example, then

90 612 4186 246 1631
238 1610 123 611 4183
[Fols = | 644 4182 235 1602 102 |,
1599 94 623 4215 234
4194 267 1598 91 615

18 a panmagic square with magic number Fyy = 6765.

We now generalize (1.1) to higher dimensions. Let a > 2 and let L1 = [b;;] and Lo = [c;;] be
orthogonal, diagonal latin squares on {0,...,n —1}. We can assume that 0,1,2,...,n—1 are
sequential on the main diagonals of Ly and Lo, i.e., by = ¢;; =i fori=0,...,n—1. Let § =
{SZ"SO = Fa,si = a+2i—17i = 1, o= 1} and T = {ti’to = Fa_,_l,ti = a+2i7i = 1, o= 1}.
S contains n distinct values, T' contains n distinct values, and by Proposition 3.2 the set
{s+t|s € S,t € T} contains n? distinct sums. Let [F,], be the magic square derived from
Construction 1.9. The diagonal entries of [Fy], are spy, + tegy = So +to = Fu + Fay1 = Faio
and fori=1,...,n—1, sp,, +tc,;, = si +ti = Fayoi1 + Foyoi = Fay2it1.
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The magic number is given by the sum along the main diagonal which by (3.6) is

n—1 n—1
> (si+t:) = (Fut Fayr) + Y Fayaina
i=0 =1
n
= (Fo+ Fo1) + Z Fot2i—1
i=2

n
=F.+ ZFa-‘r%—l = Fa+2n-
i=1

Hence, [F,], is magic with main diagonal entries Fibonacci numbers and magic constant

MN - Fa+2n.
We note in passing that it follows from Proposition 3.2 that all the Fibonacci numbers
Foio,Fot3,...,Fypon—1 occur as entries in [F,),.

It will be informative to present a complete example as to how this construction is done.

Example 3.7. Using Theorem 1.7 with n = 5 begin with the self orthogonal array

01 2 3 4
23 401
L=]14 01 2 3
1 2 3 40
3401 2
Let 0(0) = 1)=2,0(4) =3,0(2) =4. Then
0 2 41 3 043 21
41 3 0 2 21 04 3
30241 |, (c)f=143210
24130 1 0 4 3 2
1 3 0 2 4 3 210 4
Our L1, Ly are Ly = o(L),Ly = (0L)T. Let so = Fy,51 = Fyi 1,50 = Foy3,83 = Fuys,54 =

Foi7 and tg = Fuiq,t1 a+2,t2 = Faya,t3 = Fuy6,t4 = Furg. Construct [F,), using
Construction 1.9. The (pan)magic square [Fyls is now

Fa Fa+3 Fa+7 Fa+1 Fa+5 Fa+1 Fa+8 Fa+6 Fa+4 Fa+2
Fa+7 Fa+1 Fa+5 Fa Fa+3 Fa+4 Fa+2 Fa+1 Fa+8 Fa+6
Fa+5 Fa Fa+3 Fa+7 Fa+1 + Fa+8 Fa+6 Fa+4 Fa+2 Fa+1
Fa+3 Fa+7 Fa+1 Fa+5 Fa Fa+2 Fa+1 Fa+8 Fa+6 Fa+4
Fa—l—l Fa+5 Fa Fa+3 Fa+7 Fa+6 Fa+4 Fa+2 Fa+1 Fa+8

and equals
Foyo Foys + Fays Fais Fot1+ Fava Foyo+ Fogs
Fota+ Foir Fais Foi1+ Fars  Fo+ Fars  Fups+ Fate
Fots + Foys  Fo+ Fate Foyts Foio+ Forr Foo1+ Fogo |, (3.7)
Fa+4 Fa+1+Fa+7 Fa+1+Fa+8 Fa+7 Fa+Fa+4
Fot1+ Fate Fate Fot+ Fora  Fap1+ Fags Fato

with magic constant Fy11¢.
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Example 3.8. If a = 3 then (3.7) is

5 97 89 16 26
68 8 24 91 42
[Fs]s=| 110 36 21 60 6
13 58 92 55 15
37 34 7 11 144

which is panmagic with magic constant Fis = 233.

4. CONCLUDING REMARKS

In conclusion, Section 3 provides a way to construct an infinite family of Fibonacci-like
magic squares for each n > 4, except n = 6. The obvious Fibonacci-like magic square for
n = 11is [Fy]1 = [F,] where F, is any Fibonacci number. No order 2 magic squares exist.
Using Chernick’s [6] special form for 3 x 3 magic squares it can be shown that any 3 x 3
Fibonacci-like magic square has a magic constant of one of five different types. None of these
magic constants are Fibonacci numbers. Thus no 3 x 3 Fibonacci-like magic square can have
a Fibonacci number as a magic number. One such type is

Fa+5 F, Fa+1 + Fa+4
Fots Fota Foto+ Fata
Fa+Fa+3 Fa+1+Fa+5 Fa+2

which has magic constant Fy s + Fyi6 and so 3 x 3 Fibonacci-like magic squares can be
constructed. It is our belief that 6 x 6 Fibonacci-like magic squares can be constructed,
however at this time we have yet to find any specific 6 x 6 Fibonacci-like magic squares. For
example, since a 6 X 6 magic square cannot be obtained by means of orthogonal latin squares
the example [8, p. 212]

(35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

can be written uniquely by Zeckendorf’s theorem as

Fy+F> Fy F5+F> Fg+F5 Fr+Fs5+F>  Fg+Fy
Fy Fg+Fo+Fy F5+Fs 3 Fs+F3  Fs+Fy+F>
Fy+Fs+F3  Fg+Ib F3 Fs+Fy  Fg+F5+Fy Fr+F5+F3
Fg Fg+F5+F3 Fy+Fo+Fy+F> Fr+Fy+F>  Fg+F3 Fr4+F3 ’
Fy+Fs+F> F5 Fy Fe+Fy+Fy  Fr+Fs Fr4+Fy
Fy+F> Fyo+F3 F3+Fs Fr Fr+Fy Fe+Fy

which, though magic, is not Fibonacci-like.

We have used Construction 1.9 to extend (2.1), (2.3), and (1.1) to higher dimensions for
general Fibonacci numbers w1 = a,us = b, upyro = Auyy1 + Bu, for constants a,b, A, B. In
particular we have constructed the higher dimensional analogues for the Jacobsthal numbers
and generalized the Pell-like magic square, [F,], that was presented in [7]. However for the
Pell, Jacobsthal, and general second order recurrence relations, problems about uniqueness
of sums occur and the forms of the extensions depend upon A and B. These results will be
presented at a later date.
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