
PROOF OF KIMBERLING’S “EVEN SECOND COLUMN” CONJECTURE

MICHAEL BEHREND

Abstract. The quasi-Zeckendorf representations of a positive integer are introduced, and
are used to prove a conjecture of Kimberling about a certain Stolarsky interspersion (the
“even second column” array). In addition, alternative proofs of some known results about
Stolarsky interspersions are given.

1. Introduction

The “even second column” (ESC) array was introduced by Clark Kimberling in [1], as an
example of a Stolarsky interspersion. The following characterization of Stolarsky interspersions
is taken from [1] (with changed notation in particular, indexing here starts at 0 not 1). Let
(δi) (i ≥ 0) be any sequence with δ0 = 1 and δi = 0 or 1 (i ≥ 1). The Stolarsky interspersion
corresponding to (δi) is an array a(i, j) (i, j ≥ 0) defined by induction on the rows, as follows.

For integer i ≥ 0, let a(i, 0) be the least positive integer that has not already occurred in rows
0, . . . , i−1 (so that a(0, 0) = 1). Let a(i, 1) = bΦa(i, 0)c+δi, where Φ = (

√
5+1)/2 = 1.618 . . ..

Continue the row by the Fibonacci-type recurrence a(i, j) = a(i, j − 1) + a(i, j − 2) (j ≥ 2).
Thus row 0 consists of the Fibonacci sequence 1, 2, 3, 5, 8, . . .; and row 1 begins 4, 6, 10, . . . or
4, 7, 11, . . . according as δi = 0 or 1.

The ESC array is obtained by taking δi = 1 if i is even, 0 if i is odd. See Table 1 below for
the top left corner of the ESC array. The main object of this paper is to prove Kimberling’s
conjecture [1] that every number in the second column of the ESC array is even. It is also
shown how the techniques developed here lead to alternative proofs of some known results on
Stolarsky interspersions.

Given a row containing an integer n, say n = a(i, j), for integer p ≥ −j let Sp(n) denote
a(i, j + p), the pth successor of n in its row. If j > 0 then S−1(n) is the predecessor of n.

2. Zeckendorf Representation of a Positive Integer

Theorem 2.1. Every positive integer n can be represented uniquely as a sum of Fibonacci
numbers

n = Fc0 + Fc1 + · · ·+ Fcq (2.1)

such that

(i) ci − ci−1 ≥ 2 for i = 1, . . . , q,
(ii) c0 ≥ 2.

This is Zeckendorf’s Theorem [5] (see also [3]) and such a representation is called a Zeck-
endorf representation, here abbreviated to ZRep.

Lemma 2.2. For any integer r,

(i) ΦFr = Fr+1 − (−Φ)−r,
(ii) Φ−1Fr = Fr−1 − (−Φ)−r,
(iii) Φ−2Fr = Fr−2 + (−Φ)−r.
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Proof. These follow easily from Binet’s formula Fr = (Φr − (−Φ)−r)/
√
5. �

Lemma 2.3. Let c0, c1, . . . , cq be integers with ci − ci−1 ≥ 2 (i = 1, . . . , q). If p is an integer
such that 0 ≤ p ≤ q then

(−Φ)−cp + (−Φ)−cp+1 + · · ·+ (−Φ)−cq = (−Φ)−cpθ, (2.2)

where Φ−1 < θ < Φ.

Proof. Regard (2.2) as the definition of θ, and use backwards induction on p. If p = q then
θ = 1 and the result holds. Suppose 0 ≤ p < q and the result holds with p + 1 in place of p.
For convenience, write c = cp, d = cp+1. By the inductive hypothesis,

θ = 1 + (−Φ)c−dθ′, where Φ−1 < θ′ < Φ.

If c ≡ d (mod 2) then Φ−1 < 1 < θ ≤ 1 + Φ−2θ′ < 1 + Φ−1 = Φ.
If c 6≡ d (mod 2) then d− c ≥ 3, so Φ > 1 > θ ≥ 1− Φ−3θ′ > 1− Φ−2 = Φ−1.
In either case, the inductive step is proved. �

Proposition 2.4. Let n be a positive integer and let (2.1) be the ZRep of n. Then

Φ−c0−1 < {Φ−2n} < Φ−c0+1 if c0 is even

1− Φ−c0+1 < {Φ−2n} < 1− Φ−c0−1 if c0 is odd,

where { } denotes the fractional part.

Proof. By Lemma 2.2(iii), Φ−2n = m+ ξ where

m = Fc0−2 + Fc1−2 + · · ·+ Fcq−2, ξ = (−Φ)−c0 + (−Φ)−c1 + · · ·+ (−Φ)−cq .

Lemma 2.3 with p = 0 gives ξ = (−Φ)−c0θ where Φ−1 < θ < Φ. By the definition of a ZRep,
c0 ≥ 2, so |ξ| ≤ Φ−1. We have

Φ−2n =

{

m+ |ξ| if c0 is even

(m− 1) + (1− |ξ|) if c0 is odd,
(2.3)

and the result follows. �

Since in Proposition 2.4 the intervals for different values of c0 are disjoint, Proposition 2.4
can be applied in reverse to determine c0 from {Φ−2n}. This is done at the start of Section 4.

3. Quasi-Zeckendorf Representations of a Positive Integer

Define a quasi-Zeckendorf representation (QZRep) to be a representation (2.1) where

(i) ci − ci−1 ≥ 2 for i = 1, . . . , q (as in a ZRep),
(ii) c0 ≥ 0 (i.e. F0 and F1 are now allowed),
(iii) if c0 = 0, then c1 (necessarily present) is odd.

Clearly every ZRep is a QZRep. For example F1 + F4 and F2 + F4 are to be considered
distinct QZReps of 4, although F1 = F2. A QZRep will be called odd or even if its least index
c0 is odd or even.

In the following, 〈c0, c1, . . . , cq〉 denotes a QZRep

Fc0 + Fc1 + · · ·+ Fcq (c0 < c1 < · · · < cq) (3.1)

and val〈c0, c1, . . . , cq〉 denotes the integer that it represents.

Proposition 3.1. Every positive integer n has a unique odd QZRep and a unique even QZRep.
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1 2 3 5 8 . . . 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉 . . .
4 6 10 16 26 . . . 〈1, 4〉 〈2, 5〉 〈3, 6〉 〈4, 7〉 〈5, 8〉 . . .
7 12 19 31 50 . . . 〈0, 3, 5〉 〈1, 4, 6〉 〈2, 5, 7〉 〈3, 6, 8〉 〈4, 7, 9〉 . . .
9 14 23 37 60 . . . 〈1, 6〉 〈2, 7〉 〈3, 8〉 〈4, 9〉 〈5, 10〉 . . .

11 18 29 47 76 . . . 〈4, 6〉 〈5, 7〉 〈6, 8〉 〈7, 9〉 〈8, 10〉 . . .
. . . . . .

Table 1: Top left of the ESC array with (right) QZRep notation.

Proof. Existence. If the ZRep of n is odd, it is an odd QZRep, and an even QZRep is obtained
by prefixing F0. If the ZRep of n is even, it is an even QZRep, and if the smallest index is 2t
then an odd QZRep is obtained from the (easily proved) relation

F1 + F3 + · · ·+ F2t−1 = F2t (t = 1, 2, 3, . . .). (3.2)

Uniqueness. Suppose n has two odd QZReps. If neither includes F1 they are ZReps and
thus identical by Zeckendorf’s Theorem 2.1. If both include F1 then either n = 1 (a trivial
case), or we can delete F1 to obtain two ZReps of n − 1 and again apply Theorem 2.1. If
the first includes F1 and the second does not, suppose the first includes F1, . . . , F2t−1 but not
F2t+1, and replace these by F2t; this gives both an even and an odd ZRep of n; a contradiction.
Suppose n has two even QZReps. If neither includes F0 they are identical by Theorem 2.1. If
both include F0, we can delete F0 and again apply Theorem 2.1. If one includes F0 and the
other does not, delete F0 to obtain both an even and an odd ZRep of n; a contradiction. �

Proposition 3.2. Let n be a positive integer. If every Fibonacci index in the odd (resp. even)
QZRep of n is increased by 1, the result is a QZRep of bΦnc (resp. bΦnc+ 1).

Proof. Clearly the result is a QZRep. Let n = val〈c0, c1, . . . , cq〉 be a QZRep of n, and define

n+ = val〈c0 + 1, c1 + 1, . . . , cq + 1〉. (3.3)

By Lemma 2.2(i), n+ − Φn = (−Φ)−c0 + · · ·+ (−Φ)−cq , hence by Lemma 2.3 with p = 0,

n+ − Φn = (−Φ)−c0θ, where Φ−1 < θ < Φ.

Case 1. If c0 is odd then 0 < Φn− n+ < Φ1−c0 ≤ 1, so n+ = bΦnc.
Case 2. If c0 is even and c0 > 0 then 0 < n+ − Φn < Φ1−c0 < 1, so n+ = bΦnc+ 1.
Case 3. If c0 = 0 then Fc1 is present with c1 odd, so by Case 1 we have n+ = F1 + bΦnc =

bΦnc+ 1. �

Proposition 3.2 can be applied to generate the Stolarsky interspersion corresponding to a
given zero–one sequence (δi). Having found the first term of row i, write down its odd QZRep
if δi = 0 or its even QZRep if δi = 1. By Proposition 3.2 the second term of the row is obtained
by incrementing the indices by 1, and then the Fibonacci-type rule implies that the rest of
the row is generated by further increments. This method of “shifting subscripts” was used
by Kimberling [2] to generate a particular Stolarsky interspersion (the Wythoff array). Our
Proposition 3.2 is similar to Lemma 2 in [2, p. 4].

Table 1 shows the top left corner of the ESC array, as generated by this method.

Given a QZRep 〈c0, . . . , cq〉, define Tj〈c0, . . . , cq〉 (j = 0, 1, 2) to be the number of indices
c0, . . . , cq that are not congruent to j (mod 3).

Proposition 3.3. For any QZRep 〈c0, . . . , cq〉, we have
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(i) T0〈c0, . . . , cq〉 ≡ val〈c0, . . . , cq〉 (mod 2).
(ii) T2〈c0, . . . , cq〉 ≡ val〈c0 + 1, . . . , cq + 1〉 (mod 2).
(iii) T2〈c0, . . . , cq〉+T2〈c0 + 1, . . . , cq + 1〉+T2〈c0 + 2, . . . , cq + 2〉 ≡ 0 (mod 2).
(iv) T0〈c0, . . . , cq〉+T1〈c0, . . . , cq〉+T2〈c0, . . . , cq〉 ≡ 0 (mod 2).

Proof. (i) holds because Fr is even if and only if r is divisible by 3. (ii) follows easily from (i).
(iii) and (iv) hold because the LHS counts each cr twice. �

4. Blocks of Integers: Types A, B, C

Partition the positive integers into blocks separated by multiples of Φ2 = 2.618 . . ., and
label the blocks 0, 1, 2, . . . . Thus, n belongs to block i if and only if bΦ−2nc = i.

Proposition 4.1. Let Q be a QZRep. Then T2Q is even if and only if Q is either the even
QZRep of an integer in an even block or the odd QZRep of an integer in an odd block.

Proof. Let Q = 〈c0, . . . , cq〉 and n = valQ. Let n be in block i; then by the way the blocks are
defined, i = bΦ−2nc. Since Φ−2 = 1− Φ−1 and Φ = 1 + Φ−1, we have

i = bΦ−2nc = n− bΦ−1nc − 1 6≡ n+ bΦ−1nc = bΦnc (mod 2). (4.1)

Let n+ = val〈c0 + 1, . . . , cq + 1〉. By Proposition 3.3(ii), T2〈c0, . . . , cq〉 ≡ n+ (mod 2). There
are four cases if i and c0 are independently even or odd. If for example both are even, then
by (4.1) bΦnc is odd, and by Proposition 3.2 n+ = bΦnc+ 1, so n+ is even. The other three
cases are similar. �

n Odd QZRep of n Even QZRep of n
Block 0 * 1 〈1〉 〈2〉
Type A 2 〈3〉 〈0,3〉
Block 1 3 〈1,3〉 〈4〉
Type B * 4 〈1,4〉 〈2,4〉

5 〈5〉 〈0, 5〉
Block 2 6 〈1, 5〉 〈2, 5〉
Type A * 7 〈3, 5〉 〈0,3, 5〉
Block 3 8 〈1,3, 5〉 〈6〉
Type C * 9 〈1,6〉 〈2,6〉

10 〈3,6〉 〈0,3,6〉
Block 4 * 11 〈1,3,6〉 〈4,6〉
Type B 12 〈1,4,6〉 〈2,4,6〉

13 〈7〉 〈0,7〉
Block 5 14 〈1,7〉 〈2,7〉
Type A * 15 〈3,7〉 〈0,3,7〉
Block 6 16 〈1,3,7〉 〈4,7〉
Type B * 17 〈1,4,7〉 〈2,4,7〉

18 〈5,7〉 〈0, 5,7〉
Block 7 19 〈1, 5,7〉 〈2, 5,7〉
Type A * 20 〈3, 5,7〉 〈0,3, 5,7〉

Table 2: QZReps of integers and partitioning into blocks.
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Table 2 shows the first 8 blocks, with the QZReps of each n. To illustrate Proposition 4.1,
indices congruent to 0 or 1 (mod 3) are shown in bold. Integers that start a row in the ESC
array are marked with an asterisk. We see empirically that there is exactly one such integer
in each block; this is true for all Stolarsky interspersions, as will be proved in Proposition 4.4.

The block types A, B, C will now be defined. Let b be the first integer in a block, and let
ξ = {Φ−2b}. Since b starts a block, ξ ≤ Φ−2, with equality if and (since Φ−2 is irrational) only
if b = 1. Proposition 2.4 shows that ξ 6= Φ−r for odd r. The block type is defined in terms of
ξ as follows.

Type A. Φ−3 < ξ ≤ Φ−2. Since ξ + 2Φ−2 > Φ−3 + 2Φ−2 = 1, the block has only 2 terms.
Block 0, consisting of 1 and 2, is of this type. Now assume b > 2. By Proposition 2.4, the
ZRep of b begins 〈2, . . .〉. To get the next index, note that

{Φ−2(b− F2)} = 1 + ξ − Φ−2 > 1 + Φ−3 − Φ−2 = 1− Φ−4 (4.2)

so by Proposition 2.4 the ZRep of b begins 〈2, d, . . .〉 with odd d ≥ 5. The ZRep of b + 1
therefore begins 〈3, d, . . .〉.

Type B. Φ−5 < ξ < Φ−3. Since ξ + 2Φ−2 < 1, the block has 3 terms. By Proposition 2.4
the ZRep of b begins 〈4, f, . . .〉, where any f ≥ 6 can occur. Hence the ZRep of b + 1 begins
〈2, 4, f, . . .〉 and the ZRep of b+2 begins 〈5, f, . . .〉 if f > 6, or 〈d, . . .〉 with odd d ≥ 7 if f = 6.

Type C. ξ < Φ−5. The block has 3 terms. By Proposition 2.4 the ZRep of b begins 〈e, . . .〉
with even e ≥ 6. Hence the ZRep of b + 1 begins 〈2, e, . . .〉, and the ZRep of b + 2 begins
〈3, e, . . .〉.

The QZReps of the integers in each type of block are shown in Table 3.
In the rest of this paper, bi denotes the first term in block i. All Stolarsky interspersions

below are assumed to be generated in terms of QZReps by the method of increasing indices,
as explained after Proposition 3.2. It is important to consider not only the value of an element
a(i, j), but also the QZRep by which a(i, j) is generated. For this purpose it will often be
necessary to refer to Table 3.

Lemma 4.2. In a Stolarsky interspersion generated by QZReps:

(i) A QZRep 〈c0, c1, . . .〉 with c0 ≡ c1 (mod 2) can occur only in columns 0, 1, . . . , c0 − 1.
(ii) For all i ≥ 0, bi + 1 can occur only in columns 0, 1, 2.
(iii) In row 0, each QZRep consists of a single index.
(iv) In row 0, apart from the first 3 terms b0, b0 + 1, b1, each term is either bi + 2 for some

block i of type B, or bi for some block i of type C.

Proof. (i) Clearly any QZRep 〈c0, c1, . . .〉 can occur only in columns 0, 1, . . . , c0. If it occurs
in column c0 then the row starts with 〈0, c1 − c0, . . .〉, so by (iii) in the definition of a QZRep
c0 6≡ c1 (mod 2). (ii) follows from (i) and inspection of Table 3.

(iii) We always have a(0, 0) = 1 and δ0 = 1, so row 0 begins with 〈2〉, the even QZRep of 1,
and continues 〈3〉, 〈4〉, . . .. (iv) follows from (iii) and the inspection of Table 3. �

The next lemma (4.3) summarizes results about the successors and predecessors of an element
in a Stolarsky interspersion. For block number i > 1 let d, e, f be as in Table 3. Depending
on the type of block i, define ui, vi, wi as follows (vi and wi are undefined when block i is of
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Type A Block i has 2 terms, with QZReps (odd d ≥ 5):

bi = val〈1, d, . . .〉 = val〈2, d, . . .〉
bi + 1 = val〈3, d, . . .〉 = val〈0, 3, d, . . .〉,

except that if i = 0 then the terms d, . . . are absent.

Type B Block i has 3 terms with QZReps (any f ≥ 6):

bi = val〈1, 3, f, . . .〉 = val〈4, f, . . .〉
bi + 1 = val〈1, 4, f, . . .〉 = val〈2, 4, f, . . .〉

bi + 2 =

{

val〈5, f, . . .〉 = val〈0, 5, f, . . .〉 if f > 6

val〈d, . . .〉 = val〈0, d, . . .〉 (odd d ≥ 7) if f = 6,

except that if i = 1 then the terms f, . . . are absent.
If f = 6 then d is the greatest odd integer such that 4, 6, . . . , d− 1
occur in the even QZRep of bi.

Type C Block i has 3 terms with QZReps (even e ≥ 6):

bi = val〈1, 3, . . . , e− 1, . . .〉 = val〈e, . . .〉
bi + 1 = val〈1, e, . . .〉 = val〈2, e, . . .〉
bi + 2 = val〈3, e, . . .〉 = val〈0, 3, e, . . .〉.

Table 3: Odd and even QZReps of integers in block i.

type A):

ui =











val〈1, d− 1, . . .〉 = val〈2, d − 1, . . .〉 (Type A)

val〈3, f − 1, . . .〉 = val〈0, 3, f − 1, . . .〉 (Type B)

val〈e− 1, . . .〉 = val〈0, e− 1, . . .〉 (Type C).

(4.3)

vi =











val〈1, 3, f − 1, . . .〉 = val〈4, f − 1, . . .〉 (Type B, f > 6)

val〈1, 3, 5, . . . , d− 2, . . .〉 = val〈d− 1, . . .〉 (Type B, f = 6)

val〈1, e − 1, . . .〉 = val〈2, e − 1, . . .〉 (Type C).

(4.4)

wi =











val〈1, f − 3, . . .〉 = val〈2, f − 3, . . .〉 (Type B, f > 6)

val〈1, 3, , . . . , d− 4, . . .〉 = val〈d− 3, . . .〉 (Type B, f = 6)

val〈e− 3, . . .〉 = val〈0, e − 3, . . .〉 (Type C).

(4.5)

Lemma 4.3. For i > 1 let ui, vi, wi be defined as above.

(i) Successors: If ui occurs in a Stolarsky interspersion then S1(ui) = bi or bi+1 if ui occurs
in its odd or even QZRep. Similarly, when block i is of type B or C, S1(vi) = bi + 1 or
bi + 2 and S3(wi) = bi or bi + 2.

(ii) Predecessors: If bi occurs in a Stolarsky interspersion, and not in column 0, then S−1(bi) =
ui. Similarly, S−1(bi + 1) = ui or vi and S−1(bi + 2) = vi.
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Proof. The proof follows by routine checking of cases from Table 3. For example, take the two
elements of block i when block i is of type A. If bi is not in column 0 then it occurs in the
QZRep 〈2, d, . . .〉 not 〈1, d, . . .〉 by Lemma 4.2(i), and hence S−1(bi) = val〈1, d − 1, . . .〉 = ui.
Similarly if bi+1 is not in column 0 then it occurs as 〈3, d, . . .〉 not 〈0, 3, d, . . .〉 and S−1(bi+1) =
val〈2, d − 1, . . .〉 = ui also. �

The following proposition shows that not only does column 0 of a Stolarsky interspersion
contain exactly one representative of each block, but so does the union of columns 1 and 2.

Proposition 4.4. Suppose a Stolarsky interspersion is generated in terms of QZReps as de-
scribed above. For integer i ≥ 0:

(i) Each integer 1, . . . , bi+1 − 1 occurs exactly once in rows 0, . . . , i.
(ii) a(i, 0) belongs to block i.
(iii) Block i contains exactly one integer in column 1 or 2.

Proof. By induction on i. The result is easily checked for i = 0, 1. Suppose that i > 1 and
(i)–(iii) hold with i − 1 in place of i. The inductive step depends on the type of block i. In
the following, d, e, f are as in Table 3.

Type A. Define ui as in equation (4.3). Then u < bi, so by (i) ui occurs exactly once in
rows 0, . . . , i − 1, and by Proposition 4.3(i) S1(ui) = bi or bi + 1. Hence, at least one of bi,
bi+1 occurs in rows 0, . . . , i−1. Suppose, for a contradiction, that both occur. By (ii) neither
starts a row, and by Proposition 4.3(ii) the predecessor of each is ui. Thus, u occurs twice in
rows 0, . . . , i − 1, contrary to (i). Hence, exactly one of bi, bi + 1 occurs in rows 0, . . . , i − 1,
and the other is chosen as a(i, 0).

For (iii), there are two cases.
Case a(i, 0) = bi. Then bi + 1 occurs in rows 0, . . . , i− 1, and not in column 0 by inductive

hypothesis (ii) applied to those rows; hence, bi + 1 is in column 1 or 2 by Lemma 4.2(ii).
Case a(i, 0) = bi + 1. By a similar argument bi is not in column 0; hence bi is in column 1

or 2 (Table 3).
This proves the inductive step for type A.
Types B and C. The reasoning is like that for Type A, but more complicated. Define

ui, vi, wi as in equations (4.3)–(4.5). Then ui, vi, wi < bi so by (i) each of ui, vi, wi occurs
exactly once in rows 0, . . . , i− 1. By 4.3(i) S1(ui) = bi or bi + 1, S1(vi) = bi + 1 or bi + 2, and
S3(wi) = bi or bi + 2.

Hence, at least two of bi, bi+1, bi+2 occur in rows 0, . . . , i−1. Suppose, for a contradiction,
that all three occur. By (ii) none is in column 0. Hence by Proposition 4.3(ii) either ui or vi
occurs twice in rows 0, . . . , i − 1, contrary to (i). Thus exactly two of bi, bi + 1, bi + 2 occur
in rows 0, . . . , i− 1, and the third is chosen as a(i, 0).

For (iii), there are three cases.
Case a(i, 0) = bi. As in type A, bi + 1 is in column 1 or 2. Since S3(wi) 6= bi, we have

S3(wi) = bi + 2, so bi + 2 is not in column 1 or 2.
Case a(i, 0) = bi + 1. Since S3(wi) = bi or bi + 2, one of these is not is column 1 or 2.

Suppose, for a contradiction, that neither is. Then bi occurs as 〈4, f, . . .〉 (Type B), resp.
〈e, . . .〉 (Type C), and bi +2 occurs as 〈5, f, . . .〉 or 〈d, . . .〉 (Type B), resp. 〈3, e, . . .〉 (Type C).
Then wi = S−3(bi) = S−3(bi + 2), so that wi occurs twice in rows 0, . . . , i− 1, contrary to (i).

Case a(i, 0) = bi +2. As in block Type A, bi +1 is in column 1 or 2. Since S3(wi) 6= bi +2,
we have S3(wi) = bi, so bi is not in column 1 or 2.

This proves the inductive step for Types B and C. �
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The following is an alternative proof of a known result.

Proposition 4.5. Suppose a Stolarsky interspersion is generated in terms of QZReps, as
described above. Then it contains every positive integer exactly once.

Proof. Let n be a positive integer, and let n belong to block i. By Proposition 4.4(i) n occurs
exactly once in rows 0, . . . , i, and by Proposition 4.4(ii) all terms in succeeding rows are greater
than n. �

5. The “Even Second Column” Array

Proposition 5.1. Suppose the ESC array is generated in terms of QZReps, as described above.
For integer i ≥ 0:

(i) The QZRep used for a(i, 0) has even T2.
(ii) (a) If block i is of type B then a(i, 0) = bi or bi + 1, and (b) if also i is odd then

a(i, 0) = bi + 1.
(iii) (a) If block i is of type C then a(i, 0) = bi + 1 or bi + 2, and (b) if also i is even then

a(i, 0) = bi + 1.
(iv) The QZRep used for a(i, 0) does not begin 〈1, 3, . . .〉.
(v) The QZRep used for a(i, 0) does not begin 〈0, d, . . .〉 with d > 3.

Proof. By construction, a(i, 0) is written with its odd or even QZRep according as i is odd or
even, so (i) follows from Proposition 4.1.

For the rest, use induction on i. The result is easily checked for i = 0, 1. Suppose that i > 1
and (ii)–(v) hold with i − 1 in place of i. The inductive step depends on the type of block i
(refer to Table 3).

Type A. Here (ii) and (iii) are vacuously true, and all four QZReps for bi, bi+1 satisfy (iv)
and (v).

Type B. For (ii)(a) we must show that bi + 2 occurs in rows 0, . . . , i − 1. Define vi as in
equation (4.4). Then vi < bi, so by Proposition 4.4(i) vi occurs in rows 0, . . . , i− 1, and not in
its odd QZRep 〈1, 3, . . .〉 since by Lemma 4.2(i) that would be the first term of a row, contrary
to (iv). Hence, vi occurs in its even QZRep and bi + 2 = S1(vi).

For (ii)(b) we assume that i is odd and show that bi occurs in rows 0, . . . , i− 1. Define

s = val〈1, f − 2, . . .〉 = val〈2, f − 2, . . .〉, t = val〈3, f − 1, . . .〉 = val〈0, 3, f − 1, . . .〉.
By Proposition 4.4(i) s and t occur in rows 0, . . . , i − 1. If s occurs as 〈2, f − 2, . . .〉 then
bi = S2(s) and we are done. Suppose then that s occurs as 〈1, f − 2, . . .〉.

Clearly s is in column 0 or 1. If s is in column 1 then S−1(s) = 〈0, f − 3, . . .〉, so by (i)
T2〈0, f − 3, . . .〉 is even. But T2〈0, f − 3, . . .〉 = T2〈4, f, . . .〉, which is odd by Proposition 4.1
since val〈4, f, . . .〉 = bi is in an odd block by hypothesis. Hence s is in column 0, and by (i)
T2〈1, f − 2, . . .〉 is even. By Proposition 3.3(iii),

T2〈0, 3, f − 1, . . .〉 = 2 + T2〈2, f − 1, . . .〉 ≡ T2〈0, f − 3, . . .〉+T2〈1, f − 2, . . .〉 (mod 2).

The RHS terms are respectively odd and even as just shown; hence by (i) 〈0, 3, f − 1, . . .〉
cannot start a row and so cannot occur at all. Hence, t occurs as 〈3, f −1, . . .〉, and bi = S1(t).

For type B, (iii) is vacuously true, all four QZReps for bi, bi + 1 satisfy (v), and (iv) holds
because (ii)(b) ensures that the QZRep 〈1, 3, f, . . .〉 is never chosen.

Type C. For (iii)(a) we must show that bi occurs in rows 0, . . . , i − 1. Define ui as in
equation (4.3). Then ui < bi, so by Proposition 4.4(i) ui occurs in rows 0, . . . , i − 1, and not
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in its even QZRep 〈0, e− 1, . . .〉 since that would be the first term of a row and contradict (v).
Hence, ui occurs in its odd QZRep, and bi = S1(ui).

For (iii)(b) we assume that i is even and show that bi+2 occurs in rows 0, . . . , i− 1. Define

s = val〈1, e − 2, . . .〉 = val〈2, e − 2, . . .〉, t = val〈1, e− 1, . . .〉 = val〈2, e − 1, . . .〉.
By Proposition 4.4(i) s and t occur in rows 0, . . . , i − 1. If s occurs as 〈1, e − 2, . . .〉 then
bi + 2 = S2(s) and we are done. Suppose then that s occurs as 〈2, e − 2, . . .〉.

By Lemma 4.2(i), s is in column 0 or 1. If s is in column 1 then S−1(s) = 〈1, e−3, . . .〉, so by
(i) T2〈1, e−3, . . .〉 is even. But T2〈1, e−3, . . .〉 = T2〈3, e, . . .〉, which is odd by Proposition 4.1
since val〈3, e〉 = bi + 2 is in an even block by hypothesis. Hence, s is in column 0, and by (i)
T2〈2, e− 2, . . .〉 is even. By Proposition 3.3(iii),

T2〈1, e − 1, . . .〉 = T2〈3, e − 1, . . .〉 ≡ T2〈1, e − 3, . . .〉+T2〈2, e− 2, . . .〉 (mod 2).

The RHS terms are respectively odd and even, as just shown; hence by (i) 〈1, e−1, . . .〉 cannot
start a row and so cannot occur at all (Lemma 4.2(i)). Hence, t occurs as 〈2, e − 1, . . .〉, and
bi + 2 = S1(t).

For type C, (ii) is vacuously true, and all four QZReps for bi + 1, bi + 2 satisfy (iv) and
(v). �

Theorem 5.2. The second term in every row of the ESC array is even.

Proof. The result follows from the construction of the array in terms of QZReps, and Propo-
sitions 5.1(i), 3.3(ii). �

6. The “Even First Column” Array

The “even first column” (EFC) array is defined by taking δi = 0 for even i > 0, 1 for odd
i. Kimberling [1] proved that column 0 of this array is all even apart from the initial 1. The
techniques above can be applied to give an alternative proof, as follows.

Proposition 6.1. Suppose the EFC array is generated in terms of QZReps, as described above.
For integer i ≥ 0:

(i) If i > 0 then the QZRep used for a(i, 0) has odd T2.
(ii) If block i is of type B or C, and i is even, then a(i, 0) = bi or bi + 1.
(iii) If block i is of type B or C, and i is odd, then a(i, 0) = bi + 1 or bi + 2.
(iv) If i > 0 then a(i, 0) is even.

Proof. By construction, we choose the even QZRep of a(i, 0) for odd i, and vice versa; so (i)
follows from Proposition 4.1.

For the rest, use induction on i. The result is easily checked for i = 0, 1. Suppose that i > 1
and (ii)–(iv) hold with i − 1 in place of i. Then by (i) and Proposition 3.3(ii) a(k, 1) is odd
for 1 ≤ k ≤ i − 1, so in rows 1, . . . , i − 1 the parity follows the pattern EOOEOO. . . . In row
0 the pattern is OEOOEO. . . .

For the inductive step in (ii) and (iii) refer to equations (4.3)–(4.4). Let Q be the odd
QZRep of vi if i is even, resp., the even QZRep of ui if i is odd. There are 5 possibilities for
Q:

〈1, 3, f − 1, . . .〉, 〈1, 3, 5, . . . , d− 2, . . .〉, 〈1, e− 1, . . .〉, 〈0, 3, f − 1, . . .〉, 〈0, e − 1, . . .〉.
Increment each term in Q by 1 to give a QZRep Q+; then clearly T1Q = T2Q

+ and Q+ has
opposite parity to Q; hence by Proposition 4.1, T1Q is even.
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Define t = valQ. Then t < bi and hence, t occurs in rows 0, . . . , i−1. Suppose, for a contra-
diction, that t occurs in the QZRep Q. In each of the 5 cases, t starts a row (Lemma 4.2(i), or
obvious), and not row 0 by Lemma 4.2(iii); hence by (iv) t is even, and by Proposition 3.3(i)
T0Q is even. Since T1Q is even (as shown), Proposition 3.3(iii) implies T2Q is even, contrary
to (i). Hence, t occurs in its other QZRep in (4.3)–(4.4), i.e. the even QZRep of vi if i is even,
resp., the odd QZRep of ui if i is odd. Proposition 4.3(i) then implies S1(t) = bi + 2 or bi.
Thus, if i is even (resp. odd) then bi+2 (resp. bi) occurs before row i, leaving the possibilities
for a(i, 0) stated in (ii) (resp. (iii)).

For (iv) the inductive step depends on the type of block i (refer to Table 3).
Type A. If a(i, 0) = bi then bi + 1 occurs in rows 1, . . . , i − 1, and in column 1 or 2

(Lemma 4.2(iv),(ii)). Hence, bi + 1 is odd. Hence, a(i, 0) is even. If a(i, 0) = bi + 1 then bi
occurs in rows 1, . . . , i − 1 (Lemma 4.2(iv)) and in column 1 or 2 (Table 3) and again a(i, 0)
is even.

Types B and C. If a(i, 0) 6= bi + 1 then as in type A bi + 1 is odd, hence, a(i, 0) is even.
If a(i, 0) = bi + 1 then neither bi nor bi + 2 can start a row. Hence for type B, bi occurs

as 〈4, f, . . .〉, and bi + 2 occurs as 〈5, f, . . .〉 or 〈d, . . .〉; for type C, bi occurs as 〈e, . . .〉 and
bi+2 occurs as 〈3, e, . . .〉. For even (resp. odd) i the QZRep of bi (resp. bi+2) has even T2 by
Proposition 4.1. Hence by Proposition 3.3(ii), S1(bi) resp., S1(bi + 2) is even. Hence, bi resp.
bi + 2 is odd, and so a(i, 0) = bi + 1 is even. �

7. Wythoff, Dual Wythoff, and Original Stolarsky Arrays

This section discusses the class of Stolarsky interspersions defined by

a(i, 1) = bΦa(i, 0) + λc (i ≥ 1), (7.1)

where 0 ≤ λ ≤ 1 and λ is constant for a particular array. Here δi (i ≥ 1) is determined
implicitly by (7.1). In general there seems to be no simple formula giving δi in terms of i.

If λ = 1 we get the Wythoff array [2], with δi = 1 for all i. If λ = 0 we get the dual of the
Wythoff array [2], with δi = 0 for all i > 0. If λ = 1/2 we get Stolarsky’s original array [4],
with no known simple formula for δi.

It will be shown below that the value of λ makes less difference than one might expect. In
particular, the Wythoff array is generated for all λ ∈ [Φ−1, 1] and the Wythoff dual for all
λ ∈ [0,Φ−2].

Lemma 7.1. (after Stolarsky). Let x be a positive integer, 0 ≤ λ ≤ 1, and y = bΦx + λc.
Then

(i) x = bΦ−1y + 1− λc.
(ii) x+ y = bΦy + 1− λc.
Proof. Write

Φx+ λ = y + η, (7.2)

so that 0 ≤ η < 1. Since also 0 ≤ λ ≤ 1 we have

1 > (1− Φ−1)λ+Φ−1η ≥ 0. (7.3)

The equality holds in (7.3) if and only if λ = η = 0, but in that case (7.2) implies Φx = y,
which is impossible since Φ is irrational. Hence, ≥ can be sharpened to >. Since from (7.2)
x = Φ−1(y + η − λ), subtracting (7.3) from x+ 1 gives

x < Φ−1y + 1− λ < x+ 1,

and (i) follows. (ii) then follows from Φ−1 + 1 = Φ. �
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Proposition 7.2. In the array generated by (7.1), we have for i, j ≥ 1

a(i, j) =

{

bΦa(i, j − 1) + λc if j is odd

bΦa(i, j − 1) + 1− λc if j is even.
(7.4)

Proof. By induction on j. The case j = 1 is the definition (7.1). The inductive step follows
from Lemma 7.1(ii) and the Fibonacci-type relation that defines the row. �

Stolarsky (Lemma 2 of [4]) proved Lemma 7.1(ii) for λ = 1/2. In this case we have

a(i, j) = bΦa(i, j − 1) + 1/2c (i, j ≥ 1). (7.5)

In fact Stolarsky used (7.5) to define his array, and derived the Fibonacci-type relation as a
consequence. If in (7.5) 1/2 is replaced by general λ, we get an alternative generalization of
Stolarsky’s array, in which the Fibonacci relation does not necessarily hold; this will not be
discussed here.

Lemma 7.3. Let x be a positive integer, 0 ≤ λ ≤ 1, and y = bΦx+ λc. Let 〈c0, c1, . . . , cq〉 be
the ZRep of x.

(i) If c0 is even and λ ≥ Φ1−c0 then y = bΦxc+ 1.
(ii) If c0 = 2, c1 is even, and λ ≤ Φ−2 then y = bΦxc.
(iii) If c0 is odd and λ ≤ 1− Φ1−c0 then y = bΦxc.

Proof. Since x = Fc0 + Fc1 + · · ·+ Fcq , Lemma 2.2(i) implies Φx = n− ξ, where

n = Fc0+1 + Fc1+1 + · · · + Fcq+1, ξ = (−Φ)−c0 + (−Φ)−c1 + · · · + (−Φ)−cq .

Lemma 2.3 with p = 0 gives ξ = (−Φ)−c0θ, where Φ−1 < θ < Φ.
For (i), Φx = n− |ξ|, where |ξ| < Φ1−c0 ≤ λ. Hence, y = bΦx+ λc = n = bΦxc+ 1.
For (ii), Lemma 2.3 with p = 1 gives |ξ| = Φ−2 + Φ−c1θ where Φ−1 < θ < Φ. Hence,

Φx = n− |ξ| where |ξ| > Φ−2 ≥ λ. Hence, y = bΦx+ λc = n− 1 = bΦxc.
For (iii), Φx = n+ |ξ| with |ξ| < Φ1−c0 ≤ 1− λ. Hence, y = bΦx+ λc = n = bΦxc. �

The Wythoff Array. The Wythoff array is generated by taking λ = 1, or equivalently
δi = 1 for all i. This array was studied by Kimberling [2], who showed that column j consists
of exactly those integers whose ZRep has lowest index j+2. The following proposition proves
Kimberling’s result using the concepts of this paper.

Proposition 7.4. In the array generated by (7.1) with Φ−1 ≤ λ ≤ 1:

(i) δi = 1 for all i.
(ii) a(i, 0) = bi if block i is of Type A, and a(i, 0) = bi + 1 otherwise.
(iii) The QZRep used for a(i, 0) starts 〈2, . . .〉, and all such QZReps appear in column 0.

Proof. By induction over i. The result is clear for i = 0. For i = 1, note that a(1, 0) = 4 and

6 < 4Φ < 7 < 4Φ + Φ−1 < 4Φ + 1 < 8.

Hence, a(1, 1) = b4Φ + λc = 7, δ1 = 1, and a(1, 0) appears in the even QZRep 〈2, 4〉. Now
suppose i > 1 and the result holds for 0, . . . , i− 1. The inductive step depends on the type of
block i. Again d, e, f are as in Table 3.

Type A. Let u = val〈2, d−1〉. Then u occurs in rows 0, . . . , i−1 in the QZRep 〈2, d−1, . . .〉,
hence, S1(u) = bi + 1. Hence, a(i, 0) = bi and its ZRep is 〈2, d, . . .〉.
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Type B. Let u = val〈2, f − 2, . . .〉. Then u occurs in rows 0, . . . , i − 1 in the QZRep
〈2, f − 2, . . .〉, hence, bi = S1(u). Similarly,

bi + 2 =

{

S1(v), v = val〈2, f − 3, . . .〉 if f > 6

Sd−2(v), v = val〈2, . . .〉 if f = 6.

Hence, a(i, 0) = bi + 1 and its ZRep is 〈2, 4, f, . . .〉.
Type C. Here bi = Se−2(u) where u = val〈2, . . .〉, and bi + 2 = S1(v) where v = val〈2, e −

1, . . .〉. Hence, a(i, 0) = bi + 1 and its ZRep is 〈2, e, . . .〉.
Thus for all block types the ZRep of a(i, 0) begins 〈2, . . .〉, so Lemma 7.3(i) implies a(i, 1) =

bΦa(i, 0)c + 1, i.e. δi = 1. Hence the even QZRep 〈2, . . .〉 is used for a(i, 0).
Table 3 shows that each block contains exactly one QZRep starting with 〈2, . . .〉, and the

above shows that for each block this QZRep is always the one chosen for a(i, 0). Hence all
such QZReps appear in column 0. �

The Dual of the Wythoff Array. The Wythoff dual is generated by taking λ = 0, or
equivalently δi = 0 for all i > 0.

Proposition 7.5. In the array generated by (7.1) with 0 ≤ λ ≤ Φ−2, we have for all i > 0:

(i) δi = 0.
(ii) a(i, 0) = bi + 1.
(iii) The QZRep used for a(i, 0) starts either 〈1, e, . . .〉 (e even) or 〈3, d, . . .〉 (d odd), and all

such QZReps appear in column 0.

Proof. By induction over i. For i = 1, note that a(1, 0) = 4 and

6 < 4Φ < 4Φ + Φ−2 < 7.

Hence, a(1, 1) = b4Φ + λc = 6, δ1 = 0, and a(1, 0) appears in the odd QZRep 〈1, 4〉.
Now suppose i > 1 and the result holds for 1, . . . , i− 1. The inductive step depends on the

type of block i. Again d, e, f are as in Table 3. Note that by (iii) rows 0, . . . , i − 1 do not
contain a QZRep 〈0, . . .〉 or 〈2, h, . . .〉 where h is even.

Type A. Let u = val〈1, d−1〉. Then u occurs in rows 0, . . . , i−1 in the QZRep 〈1, d−1, . . .〉
not 〈2, d − 1, . . .〉, hence, S1(u) = bi. Hence, a(i, 0) = bi + 1 and its ZRep is 〈3, d, . . .〉. Since
λ ≤ Φ−2, we have a fortiori λ ≤ 1− Φ−2, and Lemma 7.3(iii) implies a(i, 1) = bΦa(i, 0)c, i.e.
δ = 0. Hence the odd QZRep 〈3, d, . . .〉 is used for a(i, 0).

Type B. Here

bi =

{

S1(u), u = val〈3, f − 1, . . .〉 if f is even

S3(u), u = val〈1, f − 3, . . .〉 if f is odd.

If f > 6 then

bi + 2 =

{

S4(v), v = val〈1, f − 4, . . .〉 if f is even

S2(v), v = val〈3, f − 2, . . .〉 if f is odd.

If f = 6 let bi + 2 = val〈d, g, . . .〉 with odd d ≥ 7. Then

bi + 2 =

{

Sd−1(v), v = val〈1, g − d+ 1, . . .〉 if g is even

Sd−3(v), v = val〈3, g − d+ 3, . . .〉 if g is odd.

Hence, a(i, 0) = bi + 1 and its ZRep is 〈2, 4, f, . . .〉. Hence Lemma 7.3(ii) implies a(i, 1) =
[Φa(i, 0)], i.e. δ = 0. Hence the odd QZRep 〈1, 4, f, . . .〉 is used for a(i, 0).

MAY 2012 117



THE FIBONACCI QUARTERLY

Type C. Let bi = val〈e, g, . . .〉 (even e ≥ 6). Then

bi =

{

Se−3(u), u = val〈3, g − e+ 3, . . .〉 if g is even

Se−1(u), u = val〈1, g − e+ 1, . . .〉 if g is odd.

Also bi + 2 = S2(v) where v = val〈1, e − 2, . . .〉.
Hence, a(i, 0) = bi +1 and its ZRep is 〈2, e, . . .〉. Lemma 7.3(ii) implies a(i, 1) = bΦa(i, 0)c,

i.e. δ = 0. Hence the odd QZRep 〈1, e, . . .〉 is used for a(i, 0).
Table 3 shows that every block contains exactly one QZRep of the type stated, and the

above shows that for each block this QZRep is always the one chosen for a(i, 0). Hence all
such QZReps appear in column 0. �

Proposition 7.6. In the array generated by (7.1) with 0 ≤ λ ≤ 1, we have a(i, 0) = bi + 1
whenever block i is of type B or C.

Proof. For λ ∈ [Φ−1, 1] (resp. [0,Φ−2]) the result is already proved in Proposition 7.4 (resp.
Proposition 7.5). So assume that Φ−2 < λ < Φ−1. Let block i be of type B or C (hence i > 0)
and suppose, for a contradiction, that bi + 1 does not begin a row. Define y = bi + 1 and
x = S−1(y). By Proposition 7.2, y = bΦx + λ′c, where λ′ = λ or 1 − λ and in either case
Φ−2 < λ′ < Φ−1 (since Φ−1 +Φ−2 = 1). By Lemma 7.1(i), x = bΦ−1y + 1− λ′c.

Table 3 shows that the ZRep of y (= bi + 1) begins 〈2, e, . . .〉 with e even. Hence by
Lemma 2.2(ii)

Φ−1y + 1− λ′ = (F1 + Fe−1 + · · · ) + µ, where µ = 1− λ′ − Φ−2 − Φ−e ± · · · .
Lemma 2.3 with p = 0 gives µ < 1− λ′ − Φ−3 < 1 and µ > 1− λ′ − Φ−1 > −1. Hence

x = bΦ−1y + 1− λ′c = (F1 + Fe−1 + · · · )− κ,

where κ = 0 if µ ≥ 0 or κ = 1 if µ < 0. By Lemma 2.2(i) and Lemma 2.3,

Φx+ λ′ = (F2 + Fe + · · · ) + Φ−1 +Φ1−eθ − Φκ+ λ′ (where Φ−1 < θ < Φ)

= y + λ′ − Φκ+Φ−1 +Φ1−eθ.

If µ ≥ 0 this gives

Φx+ λ′ > y + λ′ +Φ−1 +Φ−e > y +Φ−2 +Φ−1 + 0 = y + 1,

contradicting bΦx+ λ′c = y. If µ < 0 then

Φx+ λ′ < y + λ′ −Φ+ Φ−1 +Φ2−e ≤ y +Φ−1 − Φ+ Φ−1 +Φ−2 = y,

again contradicting bΦx+ λ′c = y. �
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