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Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known.
Fraenkel generalized to recurrence sequences un = a1un−1 + · · ·+ahun−h provided a1 ≥ a2 ≥

· · · ≥ ah > 0. We remove this restriction, but do assume ai ≥ 0, and show that a unique rep-
resentation of every positive integer is possible with digit strings composed of certain blocks
which are lexicographically less than a1a2 · · · ah.

1. Introduction

A well-known property of the Fibonacci numbers is the Zeckendorf representation. Every
positive integer N is uniquely represented as a sum of Fibonacci numbers with the condition
that no two consecutive Fibonacci numbers are used [8]. Note that using the combinatorial Fi-
bonacci numbers {1, 2, 3, 5, . . .} saves complications which would arise using {0, 1, 1, 2, 3, 5, . . .}.

Generalizations to other second order recurrence sequences and to some higher order re-
currences have been examined [1, 2, 3, 4, 5, 6, 7]. Even the common base 10 and base 2
representations are examples using first order recurrences un = 10un−1 and un = 2un−1.

Indeed, if {un} is pretty much any sequence of positive integers we could study representa-
tions of the form

N =

m∑

i=0

diui (1.1)

where the di are “digits” of the representation. We will assume that u0 = 1, the ui are strictly
increasing, and the di ≥ 0. If so, every positive N has a unique representation by simply using
the greedy algorithm.

Informally, this means simply subtracting the largest possible ui at each step. Formally, if

um ≤ N < um+1, then di = 0 for i > m. For j ≤ m let Nj = N −
∑

i>j

diui. Then dj = bNj/ujc

where b·c denotes the floor function.
The property which sets the representations using recurrence sequences apart is that the

resulting strings of digits dm · · · d0 are easily described. For other sequences, the digits do not
appear to satisfy any easy to describe rule. The two properties we would like in representations
are uniqueness and a simple rule to describe the digits. For base 10, the rule is 0 ≤ di < 10;
for Zeckendorf it is 0 ≤ di ≤ 1 and didi−1 6= 11.

In [2], Fraenkel looks at recurrences of any order:

un = a1un−1 + a2un−2 + · · ·+ ahun−h. (1.2)

He requires that the ai be decreasing, a1 ≥ a2 ≥ · · · ≥ ah.
More recently, the authors [7] and Kologler, Kopp, Miller, and Wang [10, 13] have noted

that the decreasing condition on the ai is not necessary.
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Specifically, let S = a1a2 . . . ah be called the signature of recurrence (1.2). Also, define an
associated set of strings S = {S0, S1, . . . , SA−1} where A = a1 + a2 + · · ·+ ah, S0 = 0, and for
i > 0 the Si consist of all strings of length l, 1 ≤ l ≤ h such that a1 · · · al−1 ≤ Si < a1 · · · al
in lexicographic order. Thus, the signature of the recurrence un = 2un−1 + 4un−2 + un−4 is
S = 2401 and the associated strings are S = {0, 1, 20, 21, 22, 23, 2400}. Similarly the strings
associated with 10052 are {0, 1000, 1001, 1002, 1003, 1005, 10050, 10051}.

Theorem 1.1. If {un} satisfies the recurrence un = a1un−1+a2un−2+· · ·+ahun−h with ai ≥ 0
and a1 6= 0, then every positive integer N can be uniquely expressed as

∑
diui where the string

of digits dmdm−1 · · · d0 is composed of blocks of digits in the set S described previously.

A recurrence of the type in Theorem 1.1 will be called a positive recurrence.
We will give two short proofs of this theorem, one of which shows how the desired repre-

sentation is produced by a greedy algorithm.
Next, we will show how this type of representation can exist for recurrences where a1 need

not be positive and where some of the ai may be negative.
If we allow arbitrary initial values, special rules are needed for d0. The best choice is to use

the sequence {un} which counts the number of ways to tile a 1×n rectangle using ai different
kinds of tiles of length i. This choice generally produces nice combinatorial properties and
identities.

Example 1.2. Let un = un−1 + 3un−2, so including u0 = 1, {un}n≥0 = {1, 1, 4, 7, 19, . . .}.
Here S = 13 and S = {0, 10, 11, 12}. The desired digital representation for integers N ≤ 19
are:

u4 = 19 u3 = 7 u2 = 4 u1 = 1 u0 = 1 N
1 0 1
1 1 2
1 2 3

1 0 0 4
1 1 0 5
1 2 0 6

1 0 0 0 7
1 0 1 0 8
1 0 1 1 9
1 0 1 2 10
1 1 0 0 11
1 1 1 0 12
1 1 1 1 13
1 1 1 2 14
1 2 0 0 15
1 2 1 0 16
1 2 1 1 17
1 2 1 2 18

1 0 0 0 0 19

Since the strings of digits in S are the strings of digits used in expressing N , another way
to think of this is to define a new sequence {vi,n} consisting of blocks of linear combinations
of the un with coefficients corresponding to the strings in S.
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If Si ∈ S, Si = a1a2 . . . ak−1m where 0 ≤ m < ak, define vi,n = a1un + a2un−1 + · · · +
ak−1 un−k+2 + mun−k+1. Then v1,n < v2,n < · · · < vA−1,n < v1,n+1. Since u−1 does not
correspond to a digit, any vi,n which would involve u−1, is not defined. Let Vn be the sequence
of all the vi,n arranged in increasing order. The representation of N can be computed by
expressing N as a sum of the Vn using the greedy algorithm, and then replacing the Vn by the
corresponding un. What do the resulting strings of digits look like?

Each Vn is a combination of uj with coefficient strings from S. Moreover, if the greedy
algorithm uses the term vi,n when expressing some Nj then v1,n ≤ Nj < vi+1,n (where vA,n =
v1,n+1).

If, in this case, vi,n = a1un+ · · ·+mun−k+1, then Nj −vi,n < un−k+1 = v1,n−k+1. Hence, no
ui is present in any two Vn terms when applying the greedy algorithm. Also, Nj − vi,n can be
any number less than v1,n−k+1 so any preceding term in the sequence is a possible next term
in the representation.

Therefore, the string of digits dmdm−1 · · · d0 consists of blocks of digits from S.

Example 1.2 (continued) Since S = {0, 10, 11, 12} and u−1 is not defined, vi,0 is not

defined. Then v1,1 = u1 + 0u0, v2,1 = u1 + u0, v3,1 = u1 + 2u0 and {Vn} = {vi,n}n≥1 =
{1, 2, 3; 4, 5, 6; 7, 11, 15; 19, 26, 33; . . .}.

Example 1.3. Let un = un−1+3un−3+2un−4 so {un}n≥0 = {1, 1, 1, 4, 9, 14, 28, 63, . . .}. Also

S = 1032 and so S = {0, 100, 101, 102, 1030, 1031}. Note that S contains no two digit string

since no such Si would satisfy 1 ≤ Si < 10. In defining the vi,n, the terms vi,0 and vi,1 are

undefined,

v1,2 = u2 + 0u1 + 0u0 = u2, v2,2 = u2 + 0u1 + u0, v3,2 = u2 + 0u1 + 2u0, but v4,2 and

v5,2 are undefined.

Therefore, {Vn} = {1, 2, 3; 4, 5, 6, 7, 8; 9, 10, 11, 12, 13; 14, 18, 22, 26, 27; 28, . . .}.

Thus, for example, 3 = V3 = v3,2 = u2+0u1 +2u0 = 1+0+2, would have digits 102. Also,
24 = 22 + 2 = V16 + V2 = v3,5 + v2,2 = (u5 + 2u3) + (u2 + u0) = 14 + 2 · 4 + 1 + 1 would have
digits 102101, composed of the strings 102 and 101.

The same procedure can be used for any N and any sequence {un} which satisfies the
conditions described above, namely all ai ≥ 0 and a1 > 0.

By the definition of S, the blocks of digits are a prefix-free code, i.e. no block is an initial
string of any other block. Hence, any string composed of such blocks is easily parsed into the
appropriate blocks. In Example 2 above, the string 101|0|0|1031|102|100 parses correctly into
blocks and is an allowable string. However, 101|0|0|11001 is not allowed since in parsing the
string we encounter a block beginning with 11. No such block is in S. Thus we have proved
Theorem 1.

If we allow alternate initial values, the description of digits needs to be adjusted allowing
for large values of u0 = 1. This is not necessary if un counts the number of ways to tile a 1×n
rectangle using ai types of tiles of length i.

There is another connection with this interpretation of un. Create blocks of digits Bi as
follows. Let B0 = 0, and for i > 0, Bi is the digit i followed by zeros, with a total of ai blocks
of length i. Define B(i) to be the length of block Bi. Thus, B(0) = 1, B(i) = 1 for 0 ≤ i < a1,
B(i) = 2 for a1 ≤ i ≤ a1 + a2, etc. Clearly, un counts the number of n digit strings composed
of the blocks Bi, since this is equivalent to a standard tiling problem.

Arrange these strings in lexicographic, or equivalently numerical order. (Not including the
string of all zeros.) Let wj(k) = number in this ordering of the string consisting of j followed
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by k zeros. Since the first string of the form j0 · · · 0 has B(j) digits, or B(j)− 1 zeros, wj(k)
is defined for k ≥ B(j)− 1.
Example 1.2 (continued)

{Bi} = {0, 10, 20, 30}

B(0) = 1, B(1) = B(2) = B(3) = 2.

1. 10 8. 1010 15. 3000
2. 20 9. 1020 16. 3010
3. 30 10. 1030 17. 3020
4. 100 11. 2000 18. 3030
5. 200 12. 2010 19. 10000
6. 300 13. 2020 20. 10010
7. 1000 14. 2030 21. 10020

· · ·

Thus, w1(1) = 1 = u1, w2(1) = 2 = v2,1, w3(1) = 3 = v3,1, w1(2) = 4 = u1,2 . . ., w1(3) = 7 =
u1,3. In general, w1(n) = un = v1,n, w2(n) = un + un−1 = v2,n, w3(n) = un + 2un−1 = v3,n.

Example 1.3 (continued) As above, with S = 1032,

{Bi} = {0, 100, 200, 300, 4000, 5000}

B(0) = 1, B(1) = 3, B(2) = 3, B(3) = 3, B(4) = 4, B(5) = 4.

Listing the strings in order:
1. 100 9. 10000 17. 100300
2. 200 10. 20000 18. 200000
3. 300 11. 30000 19. 200100
4. 1000 12. 40000 20. 200200
5. 2000 13. 50000 21. 200300
6. 3000 14. 100000 22. 300000
7. 4000 15. 100100 23. 300100
8. 5000 16. 100200 24. 300200

· · ·

w1(2) = 1 = u2 = v1,2; w2(2) = 2 = u2 + u0 = v2,2; w3(2) = 3 = u2 + 2u0 = v3,2 but w4(n)
and w5(n) are defined for n ≥ 3.

For any sequence, w1(n) is preceded by all strings of length ≤ n so w1(n) = un. For j ≥ 2,
the strings preceding wj(n) are those preceding wj−1(n) plus the block Bj−1 of length B(j−1)
followed by any string of length n−B(j − 1) + 1. Thus,

wj(n) = wj−1(n) + un−B(j−1)+1. (1.3)

Iterating equation (1.3):

wj(k) =

j−1∑

i=0

uk−B(i). (1.4)

Recall from the definition of B(i) that B(i) = j for aj values of i. So collecting like terms
in equation (1.4), the sums we obtain have the form:

wj(k) = a1uk + a2uk−1 + · · ·+ ar−1uk−r+2 +muk−r+1 (1.5)

where 0 ≤ m < ar. Hence, the sequence of numbers wj(k) is the same as the vj,k.
This procedure offers a way to order the strings composed of the blocks Bi (or equivalently

the associated tiling) and to associate each N > 0 with such a string. By associating N with
its string we can relate to expressing N as a sum of wj(k), using the greedy algorithm.
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If wj(k) ≤ N < wj+1(k) then the string associated with N begins with the block Bj and
has length k + 1. The rest of the string is the one associated with the remainder N − wj(k)
which has length at most k + 1−B(j) since Bj has length B(j). When wj(k) is expressed as
a sum of un, by equation (1.4), the terms uk, uk−1, . . . , uk−B(j−1)+1 are present.

In the remainder N − wj(k), the largest un appearing is uk−B(j), so there is no overlap in
the un terms. So the representation of N consists of disjoint blocks of digits as described by
equation (1.5), which is the same as Theorem 1.1.

2. Nonpositive Recurrences

An open question is whether some similar representation, with digit strings satisfying a
simple pattern, is possible if some of the coefficients aj are negative.

If a sequence {un} satisfies the recurrence (1.2) the associated characteristic polynomial is
f(x) = xh− a1 xh−1− · · · − ah. If g(x) is any polynomial, then un also satisfies the recurrence
whose characteristic polynomial is f(x)g(x). This is equivalent to using the original recurrence
to replace some number of occurrences of various uj . The recurrence of minimal order and
corresponding characteristic polynomial is the minimal recurrence and polynomial.

For the Fibonacci numbers, the minimal polynomial is x2 − x− 1. Since (x2 − x− 1)(x2 −
2) = x4 − x3 − 3x2 + 2x + 2, Fn also satisfies Fn+4 − Fn+3 − 3Fn+2 + 2Fn+1 + 2Fn = 0.
However, the corresponding recurrence is not positive and so Theorem 1 is not applica-
ble. But Fn also satisfies Fn+6 = Fn+5 + 3Fn+1 + Fn and Theorem 1 is applicable. Thus,
we also have unique representations where the string of digits is composed of the blocks
{0, 10000, 10001, 10002, 100030, 100031}. Thus, the Zeckendorf representation is just one of
many ways to express integers uniquely as sums of Fibonacci numbers such that the resulting
digital strings are easily described as all concatenations of a set of allowable blocks.

Although Theorem 1.1 is not applicable to nonpositive recurrences, the remarks above
suggest that if the minimal recurrence of un is nonpositive, it may also satisfy a higher order
positive recurrence. We will call such a recurrence sequence convertible.

In such a case, Theorem 1 would yield a well behaved, unique representation for all positive
integers. Is this always possible? In general there will be many possible choices for a higher
order positive recurrence. As always, special rules may be needed for the coefficients of un for
small values of n, depending on the initial values chosen.

One type of nonpositive recurrence is when a1 = 0.

Example 2.1. u0 = 1, u1 = 2, u2 = 3 and un = un−2 + un−3 for n ≥ 4.

{un} = {1, 2, 3, 3, 5, 6, 8, 11, 14, 19, 25, 33, 44, . . .}.

Since u0 = 1, no choice of initial values for this recurrence yields a strictly increasing
sequence. We could in this instance require that u3 is never used.

Since un − un−2 − un−3 = 0, we can add or subtract any multiple of this for any value of n.
An easy way to express the process is in a table.
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un =

un−1 un−2 un−3 un−4

0 1 1
1 0 −1 −1

−1 0 1 1

1 0 0 0 1

Thus, un = un−1 + un−5. Hence, S = 10001 S = {0, 10000}.
Every N is then uniquely representable in the form (1.1) with di = 0 or 1 and all 1’s

separated by at least four 0’s.
The order of a converted recurrence may be very large. Here is an example where the order

is only a little larger.

Example 2.2. un = 2un−2 + un−3 + un−4

un =

un−1 un−2 un−3 un−4 un−5 un−6 un−7 un−8 un−9 un−10

0 2 1 1
1 0 −2 −1 −1

−2 0 4 2 2
1 0 −2 −1 −1

−4 0 8 4 4
1 0 −2 −1 −1

−1 0 2 1 1

1 0 0 0 0 8 1 5 0 1

Thus, un also satisfies the positive order recurrence un = un−1+8un−6+un−7+5un−8+un−10.
It may also be the case that some of the ai are negative.

Example 2.3. un = 3un−1 − 2un−2 + 2un−3

un =

un−1 un−2 un−3 un−4

3 −2 2
−2 6 −4 4

−2 6 −4 4

1 2 4 0 4

Thus, un is convertible to un = un−1 + 2un−2 + 4un−3 + 4un−5. Again we emphasize the
converted recurrence is not unique.

The following questions remain to be answered.

(1) Are there conditions on the ai which are necessary or sufficient to guarantee the exis-
tence of a converted positive recurrence? Simple conditions for arbitrary recurrences
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seem unlikely. Conditions for low order recurrence such as second and third order will
be addressed in a future manuscript.

(2) If un is not convertible to a positive recurrence can positive integers N be uniquely
represented as in (1.1) where the strings of digits still satisfy a simple description
similar to Theorem 1.1?
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